Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Animals (Basel) ; 10(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297373

RESUMO

We use the European hedgehog (Erinaceus europaeus), a mammal with limited mobility, as a model species to study whether the structural matrix of the urban environment has an influence on population genetic structure of such species in the city of Berlin (Germany). Using ten established microsatellite loci we genotyped 143 hedgehogs from numerous sites throughout Berlin. Inclusion of all individuals in the cluster analysis yielded three genetic clusters, likely reflecting spatial associations of kin (larger family groups, known as gamodemes). To examine the potential bias in the cluster analysis caused by closely related individuals, we determined all pairwise relationships and excluded close relatives before repeating the cluster analysis. For this data subset (N = 65) both clustering algorithms applied (Structure, Baps) indicated the presence of a single genetic cluster. These results suggest that the high proportion of green patches in the city of Berlin provides numerous steppingstone habitats potentially linking local subpopulations. Alternatively, translocation of individuals across the city by hedgehog rescue facilities may also explain the existence of only a single cluster. We therefore propose that information about management activities such as releases by animal rescue centres should include location data (as exactly as possible) regarding both the collection and the release site, which can then be used in population genetic studies.

2.
Animals (Basel) ; 10(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33203020

RESUMO

Anthropogenic activities can result in both transient and permanent changes in the environment. We studied spatial and temporal behavioural responses of European hedgehogs (Erinaceus europaeus) to a transient (open-air music festival) and a permanent (highly fragmented area) disturbance in the city of Berlin, Germany. Activity, foraging and movement patterns were observed in two distinct areas in 2016 and 2017 using a "Before & After" and "Control & Impact" study design. Confronted with a music festival, hedgehogs substantially changed their movement behaviour and nesting patterns and decreased the rhythmic synchronization (DFC) of their activity patterns with the environment. These findings suggest that a music festival is a substantial stressor influencing the trade-off between foraging and risk avoidance. Hedgehogs in a highly fragmented area used larger home ranges and moved faster than in low-fragmented and low-disturbed areas. They also showed behaviours and high DFCs similar to individuals in low-fragmented, low disturbed environment, suggesting that fragmentation posed a moderate challenge which they could accommodate. The acute but transient disturbance of a music festival, therefore, had more substantial and severe behavioural effects than the permanent disturbance through fragmentation. Our results are relevant for the welfare and conservation measure of urban wildlife and highlight the importance of allowing wildlife to avoid urban music festivals by facilitating avoidance behaviours.

3.
Animals (Basel) ; 10(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751525

RESUMO

With urban areas growing worldwide comes an increase in artificial light at night (ALAN), causing a significant impact on wildlife behaviour and its ecological relationships. The effects of ALAN on nocturnal and protected European hedgehogs (Erinaceus europaeus) are unknown but their identification is important for sustainable species conservation and management. In a pilot study, we investigated the influence of ALAN on the natural movement behaviour of 22 hedgehogs (nine females, 13 males) in urban environments. Over the course of four years, we equipped hedgehogs at three different study locations in Berlin with biologgers to record their behaviour for several weeks. We used Global Positioning System (GPS) tags to monitor their spatial behaviour, very high-frequency (VHF) loggers to locate their nests during daytime, and accelerometers to distinguish between active and passive behaviours. We compared the mean light intensity of the locations recorded when the hedgehogs were active with the mean light intensity of simulated locations randomly distributed in the individual's home range. We were able to show that the ALAN intensity of the hedgehogs' habitations was significantly lower compared to the simulated values, regardless of the animal's sex. This ALAN-related avoidance in the movement behaviour can be used for applied hedgehog conservation.

4.
Animals (Basel) ; 9(7)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323837

RESUMO

Understanding the impact of human activities on wildlife behavior and fitness can improve their sustainability. In a pilot study, we wanted to identify behavioral responses to anthropogenic stress in an urban species during a semi-experimental field study. We equipped eight urban hedgehogs (Erinaceus europaeus; four per sex) with bio-loggers to record their behavior before and during a mega music festival (2 × 19 days) in Treptower Park, Berlin. We used GPS (Global Positioning System) to monitor spatial behavior, VHF (Very High Frequency)-loggers to quantify daily nest utilization, and accelerometers to distinguish between different behaviors at a high resolution and to calculate daily disturbance (using Degrees of Functional Coupling). The hedgehogs showed clear behavioral differences between the pre-festival and festival phases. We found evidence supporting highly individual strategies, varying between spatial and temporal evasion of the disturbance. Averaging the responses of the individual animals or only examining one behavioral parameter masked these potentially different individual coping strategies. Using a meaningful combination of different minimal-invasive bio-logger types, we were able to show high inter-individual behavioral variance of urban hedgehogs in response to an anthropogenic disturbance, which might be a precondition to persist successfully in urban environments.

5.
Ecol Evol ; 9(5): 2814-2832, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30891219

RESUMO

By applying second-generation sequencing technologies to microsatellite genotyping, sequence information is produced which can result in high-resolution population genetics analysis populations and increased replicability between runs and laboratories. In the present study, we establish an approach to study the genetic structure patterns of two European hedgehog species Erinaceaus europaeus and E. roumanicus. These species are usually associated with human settlements and are good models to study anthropogenic impacts on the genetic diversity of wild populations. The short sequence repeats genotyping by sequence (SSR-GBS) method presented uses amplicon sequences to determine genotypes for which allelic variants can be defined according to both length and single nucleotide polymorphisms (SNPs). To evaluate whether complete sequence information improved genetic structure definition, we compared this information with datasets based solely on length information. We identified a total of 42 markers which were successfully amplified in both species. Overall, genotyping based on complete sequence information resulted in a higher number of alleles, as well as greater genetic diversity and differentiation between species. Additionally, the structure patterns were slightly clearer with a division between both species and some potential hybrids. There was some degree of genetic structure within species, although only in E. roumanicus was this related to geographical distance. The statistically significant results obtained by SSR-GBS demonstrate that it is superior to electrophoresis-based methods for SSR genotyping. Moreover, the greater reproducibility and throughput with lower effort which can be obtained with SSR-GBS and the possibility to include degraded DNA into the analysis, allow for continued relevance of SSR markers during the genomic era.

6.
Ecol Evol ; 9(1): 672-679, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30680147

RESUMO

Bio-logging is an essential tool for the investigation of behavior, ecology, and physiology of wildlife. This burgeoning field enables the improvement of population monitoring and conservation efforts, particularly for small, elusive animals where data collection is difficult. Device attachment usually requires species-specific solutions to ensure that data loggers exert minimal influence on the animal's behavior and physiology, and ensure high reliability of data capture. External features or peculiar body shapes often make securing devices difficult for long-term monitoring, as in the case with small spiny mammals. Here, we present a method that enables high-resolution, long-term investigations of European hedgehogs (Erinaceus europaeus) via GPS and acceleration loggers. We collected data from 17 wild hedgehogs with devices attached between 9 and 42 days. Our results showed that hedgehogs behaved naturally; as individuals curled, moved through dense vegetation, slipped under fences and built regular day nests without any indication of impediment. Our novel method makes it possible to not only attach high-precision devices for substantially longer than previous efforts, but enables detachment and reattachment of devices to the same individual. This makes it possible to quickly respond to unforeseen events and exchange devices, and overcomes the issue of short battery life common to many lightweight loggers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA