Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 590(7845): 308-314, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33505019

RESUMO

Spinal cord injury (SCI) induces haemodynamic instability that threatens survival1-3, impairs neurological recovery4,5, increases the risk of cardiovascular disease6,7, and reduces quality of life8,9. Haemodynamic instability in this context is due to the interruption of supraspinal efferent commands to sympathetic circuits located in the spinal cord10, which prevents the natural baroreflex from controlling these circuits to adjust peripheral vascular resistance. Epidural electrical stimulation (EES) of the spinal cord has been shown to compensate for interrupted supraspinal commands to motor circuits below the injury11, and restored walking after paralysis12. Here, we leveraged these concepts to develop EES protocols that restored haemodynamic stability after SCI. We established a preclinical model that enabled us to dissect the topology and dynamics of the sympathetic circuits, and to understand how EES can engage these circuits. We incorporated these spatial and temporal features into stimulation protocols to conceive a clinical-grade biomimetic haemodynamic regulator that operates in a closed loop. This 'neuroprosthetic baroreflex' controlled haemodynamics for extended periods of time in rodents, non-human primates and humans, after both acute and chronic SCI. We will now conduct clinical trials to turn the neuroprosthetic baroreflex into a commonly available therapy for people with SCI.


Assuntos
Barorreflexo , Biomimética , Hemodinâmica , Próteses e Implantes , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Vias Neurais , Primatas , Ratos , Ratos Endogâmicos Lew , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/fisiologia
2.
Sci Transl Med ; 11(487)2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971452

RESUMO

After a spinal cord injury, axons fail to regenerate in the adult mammalian central nervous system, leading to permanent deficits in sensory and motor functions. Increasing neuronal activity after an injury using electrical stimulation or rehabilitation can enhance neuronal plasticity and result in some degree of recovery; however, the underlying mechanisms remain poorly understood. We found that placing mice in an enriched environment before an injury enhanced the activity of proprioceptive dorsal root ganglion neurons, leading to a lasting increase in their regenerative potential. This effect was dependent on Creb-binding protein (Cbp)-mediated histone acetylation, which increased the expression of genes associated with the regenerative program. Intraperitoneal delivery of a small-molecule activator of Cbp at clinically relevant times promoted regeneration and sprouting of sensory and motor axons, as well as recovery of sensory and motor functions in both the mouse and rat model of spinal cord injury. Our findings showed that the increased regenerative capacity induced by enhancing neuronal activity is mediated by epigenetic reprogramming in rodent models of spinal cord injury. Understanding the mechanisms underlying activity-dependent neuronal plasticity led to the identification of potential molecular targets for improving recovery after spinal cord injury.


Assuntos
Axônios/fisiologia , Proteína de Ligação a CREB/metabolismo , Meio Ambiente , Histonas/metabolismo , Regeneração Nervosa , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Acetilação , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Proteína p300 Associada a E1A/metabolismo , Gânglios Espinais/patologia , Gânglios Espinais/fisiopatologia , Camundongos , Neurônios Motores/patologia , Propriocepção , Recuperação de Função Fisiológica , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Traumatismos da Medula Espinal/patologia
3.
Science ; 336(6085): 1182-5, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22654062

RESUMO

Half of human spinal cord injuries lead to chronic paralysis. Here, we introduce an electrochemical neuroprosthesis and a robotic postural interface designed to encourage supraspinally mediated movements in rats with paralyzing lesions. Despite the interruption of direct supraspinal pathways, the cortex regained the capacity to transform contextual information into task-specific commands to execute refined locomotion. This recovery relied on the extensive remodeling of cortical projections, including the formation of brainstem and intraspinal relays that restored qualitative control over electrochemically enabled lumbosacral circuitries. Automated treadmill-restricted training, which did not engage cortical neurons, failed to promote translesional plasticity and recovery. By encouraging active participation under functional states, our training paradigm triggered a cortex-dependent recovery that may improve function after similar injuries in humans.


Assuntos
Membro Posterior/fisiologia , Locomoção , Córtex Motor/fisiologia , Paralisia/reabilitação , Tratos Piramidais/fisiologia , Robótica , Traumatismos da Medula Espinal/reabilitação , Animais , Axônios/fisiologia , Tronco Encefálico/fisiologia , Agonistas de Dopamina/administração & dosagem , Estimulação Elétrica , Feminino , Marcha , Fibras Nervosas/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Paralisia/fisiopatologia , Tratos Piramidais/citologia , Ratos , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica , Agonistas do Receptor de Serotonina/administração & dosagem , Medula Espinal/citologia , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA