Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
JCI Insight ; 9(10)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652538

RESUMO

Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract. SLC30A10 deficiency results in impaired gastrointestinal manganese excretion, leading to manganese excess, neurologic deficits, liver cirrhosis, polycythemia, and erythropoietin excess. Neurologic and liver disease are attributed to manganese toxicity. Polycythemia is attributed to erythropoietin excess. The goal of this study was to determine the basis of erythropoietin excess in SLC30A10 deficiency. Here, we demonstrate that transcription factors hypoxia-inducible factor 1a (Hif1a) and 2a (Hif2a), key mediators of the cellular response to hypoxia, are both upregulated in livers of Slc30a10-deficient mice. Hepatic Hif2a deficiency corrected erythropoietin expression and polycythemia and attenuated aberrant hepatic gene expression in Slc30a10-deficient mice, while hepatic Hif1a deficiency had no discernible impact. Hepatic Hif2a deficiency also attenuated manganese excess, though the underlying cause of this is not clear at this time. Overall, our results indicate that hepatic HIF2 is a key determinant of pathophysiology in SLC30A10 deficiency and expand our understanding of the contribution of HIFs to human disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Fígado , Manganês , Policitemia , Animais , Policitemia/metabolismo , Policitemia/genética , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fígado/metabolismo , Manganês/metabolismo , Manganês/toxicidade , Manganês/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Humanos , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Eritropoetina/metabolismo , Eritropoetina/genética , Camundongos Knockout , Masculino , Hepatócitos/metabolismo
2.
J Biol Chem ; 300(3): 105732, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336290

RESUMO

The manganese (Mn) export protein SLC30A10 is essential for Mn excretion via the liver and intestines. Patients with SLC30A10 deficiency develop Mn excess, dystonia, liver disease, and polycythemia. Recent genome-wide association studies revealed a link between the SLC30A10 variant T95I and markers of liver disease. The in vivo relevance of this variant has yet to be investigated. Using in vitro and in vivo models, we explore the impact of the T95I variant on SLC30A10 function. While SLC30A10 I95 expressed at lower levels than T95 in transfected cell lines, both T95 and I95 variants protected cells similarly from Mn-induced toxicity. Adeno-associated virus 8-mediated expression of T95 or I95 SLC30A10 using the liver-specific thyroxine binding globulin promoter normalized liver Mn levels in mice with hepatocyte Slc30a10 deficiency. Furthermore, Adeno-associated virus-mediated expression of T95 or I95 SLC30A10 normalized red blood cell parameters and body weights and attenuated Mn levels and differential gene expression in livers and brains of mice with whole body Slc30a10 deficiency. While our in vivo data do not indicate that the T95I variant significantly compromises SLC30A10 function, it does reinforce the notion that the liver is a key site of SLC30A10 function. It also supports the idea that restoration of hepatic SLC30A10 expression is sufficient to attenuate phenotypes in SLC30A10 deficiency.


Assuntos
Substituição de Aminoácidos , Proteínas de Transporte de Cátions , Dependovirus , Fígado , Manganês , Mutação , Animais , Camundongos , Peso Corporal , Encéfalo/metabolismo , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular , Dependovirus/genética , Eritrócitos , Estudo de Associação Genômica Ampla , Hepatócitos/metabolismo , Fígado/citologia , Fígado/metabolismo , Hepatopatias/genética , Hepatopatias/metabolismo , Manganês/metabolismo , Intoxicação por Manganês/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Globulina de Ligação a Tiroxina/genética
3.
bioRxiv ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865210

RESUMO

Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane transport protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract. SLC30A10 deficiency results in impaired gastrointestinal manganese excretion, leading to severe manganese excess, neurologic deficits, liver cirrhosis, polycythemia, and erythropoietin excess. Neurologic and liver disease are attributed to manganese toxicity. Polycythemia is attributed to erythropoietin excess, but the basis of erythropoietin excess in SLC30A10 deficiency has yet to be established. Here we demonstrate that erythropoietin expression is increased in liver but decreased in kidneys in Slc30a10-deficient mice. Using pharmacologic and genetic approaches, we show that liver expression of hypoxia-inducible factor 2 (Hif2), a transcription factor that mediates the cellular response to hypoxia, is essential for erythropoietin excess and polycythemia in Slc30a10-deficient mice, while hypoxia-inducible factor 1 (HIF1) plays no discernible role. RNA-seq analysis determined that Slc30a10-deficient livers exhibit aberrant expression of a large number of genes, most of which align with cell cycle and metabolic processes, while hepatic Hif2 deficiency attenuates differential expression of half of these genes in mutant mice. One such gene downregulated in Slc30a10-deficient mice in a Hif2-dependent manner is hepcidin, a hormonal inhibitor of dietary iron absorption. Our analyses indicate that hepcidin downregulation serves to increase iron absorption to meet the demands of erythropoiesis driven by erythropoietin excess. Finally, we also observed that hepatic Hif2 deficiency attenuates tissue manganese excess, although the underlying cause of this observation is not clear at this time. Overall, our results indicate that HIF2 is a key determinant of pathophysiology in SLC30A10 deficiency.

4.
J Biol Chem ; 297(1): 100835, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34051234

RESUMO

Iron is essential for erythropoiesis and other biological processes, but is toxic in excess. Dietary absorption of iron is a highly regulated process and is a major determinant of body iron levels. Iron excretion, however, is considered a passive, unregulated process, and the underlying pathways are unknown. Here we investigated the role of metal transporters SLC39A14 and SLC30A10 in biliary iron excretion. While SLC39A14 imports manganese into the liver and other organs under physiological conditions, it imports iron under conditions of iron excess. SLC30A10 exports manganese from hepatocytes into the bile. We hypothesized that biliary excretion of excess iron would be impaired by SLC39A14 and SLC30A10 deficiency. We therefore analyzed biliary iron excretion in Slc39a14-and Slc30a10-deficient mice raised on iron-sufficient and -rich diets. Bile was collected surgically from the mice, then analyzed with nonheme iron assays, mass spectrometry, ELISAs, and an electrophoretic assay for iron-loaded ferritin. Our results support a model in which biliary excretion of excess iron requires iron import into hepatocytes by SLC39A14, followed by iron export into the bile predominantly as ferritin, with iron export occurring independently of SLC30A10. To our knowledge, this is the first report of a molecular determinant of mammalian iron excretion and can serve as basis for future investigations into mechanisms of iron excretion and relevance to iron homeostasis.


Assuntos
Bile/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Hepatócitos/metabolismo , Ferro/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte de Cátions/deficiência , Dieta , Heme/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/metabolismo , Manganês/farmacologia , Camundongos Endogâmicos C57BL , Modelos Biológicos
5.
Biometals ; 34(3): 573-588, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33713241

RESUMO

Manganese (Mn), an essential metal, can be toxic at elevated levels. In 2012, the first inherited cause of Mn excess was reported in patients with mutations in SLC30A10, a Mn efflux transporter. To explore the function of SLC30A10 in vitro, the current study used CRISPR/Cas9 gene editing to develop a stable SLC30A10 mutant Hep3B hepatoma cell line and collagenase perfusion in live mice to isolate primary hepatocytes deficient in Slc30a10. We also compared phenotypes of primary vs. non-primary cell lines to determine if they both serve as reliable in vitro models for the known physiological roles of SLC30A10. Mutant SLC30A10 Hep3B cells had increased Mn levels and decreased viability when exposed to excess Mn. Transport studies indicated a reduction of 54Mn import and export in mutant cells. While impaired 54Mn export was hypothesized given the essential role for SLC30A10 in cellular Mn export, impaired 54Mn import was unexpected. Whole genome sequencing did not identify any additional mutations in known Mn transporters in the mutant Hep3B mutant cell line. We then evaluated 54Mn transport in primary hepatocytes cultures isolated from genetically altered mice with varying liver Mn levels. Based on results from these experiments, we suggest that the effects of SLC30A10 deficiency on Mn homeostasis can be interrogated in vitro but only in specific types of cell lines.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Modelos Biológicos , Animais , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Hepatócitos/metabolismo , Homeostase , Humanos , Manganês/análise , Manganês/metabolismo , Camundongos , Camundongos Knockout
6.
Gastroenterology ; 161(1): 211-224, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33741315

RESUMO

BACKGROUND AND AIMS: Bacterial swarming, a collective movement on a surface, has rarely been associated with human pathophysiology. This study aims to define a role for bacterial swarmers in amelioration of intestinal stress. METHODS: We developed a polymicrobial plate agar assay to detect swarming and screened mice and humans with intestinal stress and inflammation. From chemically induced colitis in mice, as well as humans with inflammatory bowel disease, we developed techniques to isolate the dominant swarmers. We developed swarm-deficient but growth and swim-competent mutant bacteria as isogenic controls. We performed bacterial reinoculation studies in mice with colitis, fecal 16S, and meta-transcriptomic analyses, as well as in vitro microbial interaction studies. RESULTS: We show that bacterial swarmers are highly predictive of intestinal stress in mice and humans. We isolated a novel Enterobacter swarming strain, SM3, from mouse feces. SM3 and other known commensal swarmers, in contrast to their mutant strains, abrogated intestinal inflammation in mice. Treatment of colitic mice with SM3, but not its mutants, enriched beneficial fecal anaerobes belonging to the family of Bacteroidales S24-7. We observed SM3 swarming associated pathways in the in vivo fecal meta-transcriptomes. In vitro growth of S24-7 was enriched in presence of SM3 or its mutants; however, because SM3, but not mutants, induced S24-7 in vivo, we concluded that swarming plays an essential role in disseminating SM3 in vivo. CONCLUSIONS: Overall, our work identified a new but counterintuitive paradigm in which intestinal stress allows for the emergence of swarming bacteria; however, these bacteria act to heal intestinal inflammation.


Assuntos
Colite/microbiologia , Enterobacter/fisiologia , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Cicatrização , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Técnicas Bacteriológicas , Colite/patologia , Colite/prevenção & controle , Modelos Animais de Doenças , Disbiose , Enterobacter/classificação , Fezes/microbiologia , Feminino , Humanos , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Pessoa de Meia-Idade , Movimento , Probióticos , Reepitelização , Adulto Jovem
7.
Curr Opin Anaesthesiol ; 33(2): 240-245, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31876785

RESUMO

PURPOSE OF REVIEW: This review summarizes recent basic science studies on homeostasis of iron, an essential dietary nutrient and potentially toxic metal, and explores the relevance of these studies to our understanding of trauma and related severe, acute events. RECENT FINDINGS: Recent studies in experimental models of iron homeostasis have added to our understanding of how iron levels are regulated in the body and how iron levels and iron-dependent biological processes contribute to trauma and related events. Iron deficiency, a common nutritional disorder, can impair critical organ function and wound and injury repair. Iron excess, typically because of genetic defects, can cause toxicity to tissues and, like iron deficiency, impair wound and injury repair. Finally, pharmacologic inhibition of ferroptosis, a novel form of iron-dependent cell death, is beneficial in animal models of cardiac, hepatic, and intestinal injury and intracerebral hemorrhage, suggesting that ferroptosis inhibitors could serve as novel therapeutic agents for trauma and related events. SUMMARY: Perturbations in iron homeostasis can contribute significantly to an individual's predisposition to trauma and their ability to recover posttrauma, whereas pharmacologic targeting of ferroptosis may attenuate severity of trauma-induced organ dysfunction.


Assuntos
Homeostase , Ferro/metabolismo , Ferimentos e Lesões/metabolismo , Humanos
8.
J Clin Invest ; 129(12): 5442-5461, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31527311

RESUMO

Manganese (Mn), an essential metal and nutrient, is toxic in excess. Toxicity classically results from inhalational exposures in individuals who work in industrial settings. The first known disease of inherited Mn excess, identified in 2012, is caused by mutations in the metal exporter SLC30A10 and is characterized by Mn excess, dystonia, cirrhosis, and polycythemia. To investigate the role of SLC30A10 in Mn homeostasis, we first generated whole-body Slc30a10-deficient mice, which developed severe Mn excess and impaired systemic and biliary Mn excretion. Slc30a10 localized to canalicular membranes of hepatocytes, but mice with liver Slc30a10 deficiency developed minimal Mn excess despite impaired biliary Mn excretion. Slc30a10 also localized to the apical membrane of enterocytes, but mice with Slc30a10 deficiency in small intestines developed minimal Mn excess despite impaired Mn export into the lumen of the small intestines. Finally, mice with Slc30a10 deficiency in liver and small intestines developed Mn excess that was less severe than that observed in mice with whole-body Slc30a10 deficiency, suggesting that additional sites of Slc30a10 expression contribute to Mn homeostasis. Overall, these results indicated that Slc30a10 is essential for Mn excretion by hepatocytes and enterocytes and could be an effective target for pharmacological intervention to treat Mn toxicity.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Manganês/metabolismo , Animais , Bile/metabolismo , Enterócitos/metabolismo , Feminino , Hepatócitos/metabolismo , Masculino , Manganês/toxicidade , Camundongos , Camundongos Endogâmicos C57BL
9.
Haematologica ; 104(4): 678-689, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30409795

RESUMO

The current paradigm in the field of mammalian iron biology states that body iron levels are determined by dietary iron absorption, not by iron excretion. Iron absorption is a highly regulated process influenced by iron levels and other factors. Iron excretion is believed to occur at a basal rate irrespective of iron levels and is associated with processes such as turnover of intestinal epithelium, blood loss, and exfoliation of dead skin. Here we explore iron excretion in a mouse model of iron excess due to inherited transferrin deficiency. Iron excess in this model is attributed to impaired regulation of iron absorption leading to excessive dietary iron uptake. Pharmacological correction of transferrin deficiency not only normalized iron absorption rates and halted progression of iron excess but also reversed body iron excess. Transferrin treatment did not alter the half-life of 59Fe in mutant mice. 59Fe-based studies indicated that most iron was excreted via the gastrointestinal tract and suggested that iron-loaded mutant mice had increased rates of iron excretion. Direct measurement of urinary iron levels agreed with 59Fe-based predictions that urinary iron levels were increased in untreated mutant mice. Fecal ferritin levels were also increased in mutant mice relative to wild-type mice. Overall, these data suggest that mice have a significant capacity for iron excretion. We propose that further investigation into iron excretion is warranted in this and other models of perturbed iron homeostasis, as pharmacological targeting of iron excretion may represent a novel means of treatment for diseases of iron excess.


Assuntos
Trato Gastrointestinal , Doenças Genéticas Inatas , Sobrecarga de Ferro , Ferro/metabolismo , Animais , Modelos Animais de Doenças , Ferritinas/genética , Ferritinas/metabolismo , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Camundongos , Camundongos Mutantes
10.
Free Radic Biol Med ; 129: 127-137, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30227271

RESUMO

The bone morphogenetic protein (BMP) type I receptors ALK2 and ALK3 are essential for expression of hepcidin, a key iron regulatory hormone. In mice, hepatocyte-specific Alk2 deficiency leads to moderate iron overload with periportal liver iron accumulation, while hepatocyte-specific Alk3 deficiency leads to severe iron overload with centrilobular liver iron accumulation and a more marked reduction of basal hepcidin levels. The objective of this study was to investigate whether the two receptors have additive roles in hepcidin regulation. Iron overload in mice with hepatocyte-specific Alk2 and Alk3 (Alk2/3) deficiency was characterized and compared to hepatocyte-specific Alk3 deficient mice. Co-immunoprecipitation studies were performed to detect the formation of ALK2 and ALK3 homodimer and heterodimer complexes in vitro in the presence and absence of ligands. The iron overload phenotype of hepatocyte-specific Alk2/3-deficient mice was more severe than that of hepatocyte-specific Alk3-deficient mice. In vitro co-immunoprecipitation studies in Huh7 cells showed that ALK3 can homodimerize in absence of BMP2 or BMP6. In contrast, ALK2 did not homodimerize in either the presence or absence of BMP ligands. However, ALK2 did form heterodimers with ALK3 in the presence of BMP2 or BMP6. ALK3-ALK3 and ALK2-ALK3 receptor complexes induced hepcidin expression in Huh7 cells. Our data indicate that: (I) ALK2 and ALK3 have additive functions in vivo, as Alk2/3 deficiency leads to a greater degree of iron overload than Alk3 deficiency; (II) ALK3, but not ALK2, undergoes ligand-independent homodimerization; (III) the formation of ALK2-ALK3 heterodimers is ligand-dependent and (IV) both receptor complexes functionally induce hepcidin expression in vitro.


Assuntos
Receptores de Ativinas Tipo I/genética , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 6/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Hepcidinas/genética , Sobrecarga de Ferro/genética , Ferro/metabolismo , Receptores de Ativinas Tipo I/deficiência , Animais , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 6/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/deficiência , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepcidinas/metabolismo , Humanos , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Ligação Proteica , Multimerização Proteica , Índice de Gravidade de Doença , Transdução de Sinais
11.
Neurotoxicology ; 64: 291-299, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29020610

RESUMO

It has been suggested that childhood exposure to neurotoxicants may increase the risk of Parkinson's disease (PD) or other neurodegenerative disease in adults. Some recessive forms of PD have been linked to loss-of-function mutations in the Park2 gene that encodes for parkin. The purpose of this pilot study was to evaluate whether responses to neonatal manganese (Mn) exposure differ in mice with a Park2 gene defect (parkin mice) when compared with a wildtype strain (C57BL/6J). Neonatal parkin and C57BL/6J littermates were randomly assigned to 0, 11, or 25mg Mn/kg-day dose groups with oral exposures occurring from postnatal day (PND) 1 through PND 28. Motor activity was measured on PND 19-22 and 29-32. Tissue Mn concentrations were measured in liver, femur, olfactory bulb, frontal cortex, and striatum on PND 29. Hepatic and frontal cortex gene expression of Slc11a2, Slc40a1, Slc30a10, Hamp (liver only), and Park2 were also measured on PND 29. Some strain differences were seen. As expected, decreased hepatic and frontal cortex Park2 expression was seen in the parkin mice when compared with C57BL/6J mice. Untreated parkin mice also had higher liver and femur Mn concentrations when compared with the C57BL/6J mice. Exposure to≥11mg Mn/kg-day was associated with increased brain Mn concentrations in all mice, no strain difference was observed. Manganese exposure in C57Bl6, but not parkin mice, was associated with a negative correlation between striatal Mn concentration and motor activity. Manganese exposure was not associated with changes in frontal cortex gene expression. Decreased hepatic Slc30a10, Slc40a1, and Hamp expression were seen in PND 29 C57BL/6J mice given 25mg Mn/kg-day. In contrast, Mn exposure was only associated with decreased Hamp expression in the parkin mice. Our results suggest that the Parkin gene defect did not increase the susceptibility of neonatal mice to adverse health effects associated with high-dose Mn exposure.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Manganês/toxicidade , Atividade Motora/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Projetos Piloto , Distribuição Tecidual , Ubiquitina-Proteína Ligases/genética
12.
Data Brief ; 15: 908-915, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29159229

RESUMO

High dose manganese (Mn) exposure can result in changes in tissue concentrations of other essential metals due to Mn-induced alterations in metal absorption and competition for metal transporters and regulatory proteins. We evaluated responses in mice with a Parkin gene defect (parkin mice) and a wildtype strain (C57BL/6J) following neonatal Mn exposure. Neonatal parkin and C57BL/6J littermates were randomly assigned to 0, 11, or 25 mg Mn/kg-day dose groups with oral exposures occurring from postnatal day (PND) 1 through PND 28. We report liver, femur, olfactory bulb, striatum, and frontal cortex iron, copper, and zinc concentrations and changes in hepatic gene expression of different metal transporters in PND 29 parkin and C57BL/6J mice. A companion manuscript (Foster et al., 2017) [1] describes the primary study findings. This data provides insights into strain differences in the way Mn interacts with other trace metals in mice.

13.
PLoS One ; 12(6): e0179318, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28617866

RESUMO

Trace metals are essential for health but toxic when present in excess. The maintenance of trace metals at physiologic levels reflects both import and export by cells and absorption and excretion by organs. The mechanism by which this maintenance is achieved in vertebrate organisms is incompletely understood. To explore this, we chose zebrafish as our model organism, as they are amenable to both pharmacologic and genetic manipulation and comprise an ideal system for genetic screens and toxicological studies. To characterize trace metal content in developing zebrafish, we measured levels of three trace elements, copper, zinc, and manganese, from the oocyte stage to 30 days post-fertilization using inductively coupled plasma mass spectrometry. Our results indicate that metal levels are stable until zebrafish can acquire metals from the environment and imply that the early embryo relies on maternal contribution of metals to the oocyte. We also measured metal levels in bodies and yolks of embryos reared in presence and absence of the copper chelator neocuproine. All three metals exhibited different relative abundances between yolks and bodies of embryos. While neocuproine treatment led to an expected phenotype of copper deficiency, total copper levels were unaffected, indicating that measurement of total metal levels does not equate with measurement of biologically active metal levels. Overall, our data not only can be used in the design and execution of genetic, physiologic, and toxicologic studies but also has implications for the understanding of vertebrate metal homeostasis.


Assuntos
Embrião não Mamífero/metabolismo , Oócitos/metabolismo , Oligoelementos , Animais , Oligoelementos/farmacocinética , Oligoelementos/farmacologia , Peixe-Zebra
14.
Data Brief ; 6: 989-97, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26958631

RESUMO

Here we present data on liver metal levels and expression of genes related to iron homeostasis in rhesus monkeys after inhalational manganese exposure. Archived liver samples from rhesus monkeys exposed to 0 (n=6), 0.06 (n=6), 0.3 (n=4) and 1.5 (n=4) mg/m(3) manganese inhalation for 65 days were obtained from a published study ("Tissue manganese concentrations in young male rhesus monkeys following subchronic manganese sulfate inhalation" [1]). Samples were analyzed by spectroscopy, immunoblotting and quantitative PCR to assess metal levels and gene expression. Liver manganese and iron levels were linearly correlated although only the intermediate manganese exposure level (0.3 mg Mn/m(3)) led to a statistically significant increase in liver iron levels.

15.
Biometals ; 29(3): 417-22, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26988220

RESUMO

Manganese is an essential dietary nutrient and trace element with important roles in mammalian development, metabolism, and antioxidant defense. In healthy individuals, gastrointestinal absorption and hepatobiliary excretion are tightly regulated to maintain systemic manganese concentrations at physiologic levels. Interactions of manganese with other essential metals following high dose ingestion are incompletely understood. We previously reported that gavage manganese exposure in rats resulted in higher tissue manganese concentrations when compared with equivalent dietary or drinking water manganese exposures. In this study, we performed follow-up evaluations to determine whether oral manganese exposure perturbs iron, copper, or zinc tissue concentrations. Rats were exposed to a control diet with 10 ppm manganese or dietary, drinking water, or gavage exposure to approximately 11.1 mg manganese/kg body weight/day for 7 or 61 exposure days. While manganese exposure affected levels of all metals, particularly in the frontal cortex and liver, copper levels were most prominently affected. This result suggests an under-appreciated effect of manganese exposure on copper homeostasis which may contribute to our understanding of the pathophysiology of manganese toxicity.


Assuntos
Cobre/metabolismo , Ferro/metabolismo , Manganês/administração & dosagem , Manganês/toxicidade , Zinco/metabolismo , Administração Oral , Animais , Dieta , Homeostase/efeitos dos fármacos , Masculino , Manganês/análise , Ratos , Ratos Endogâmicos F344
16.
Toxicol Sci ; 145(2): 244-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25724921

RESUMO

Concerns exist as to whether individuals may be at greater risk for neurotoxicity following increased manganese (Mn) oral intake. The goals of this study were to determine the equivalence of 3 methods of oral exposure and the rate (mg Mn/kg/day) of exposure. Adult male rats were allocated to control diet (10 ppm), high manganese diet (200 ppm), manganese-supplemented drinking water, and manganese gavage treatment groups. Animals in the drinking water and gavage groups were given the 10 ppm manganese diet and supplemented with manganese chloride (MnCl(2)) in drinking water or once-daily gavage to provide a daily manganese intake equivalent to that seen in the high-manganese diet group. No statistically significant difference in body weight gain or terminal body weights was seen. Rats were anesthetized following 7 and 61 exposure days, and samples of bile and blood were collected. Rats were then euthanized and striatum, olfactory bulb, frontal cortex, cerebellum, liver, spleen, and femur samples were collected for chemical analysis. Hematocrit was unaffected by manganese exposure. Liver and bile manganese concentrations were elevated in all treatment groups on day 61 (relative to controls). Increased cerebellum manganese concentrations were seen in animals from the high-manganese diet group (day 61, relative to controls). Increased (relative to all treatment groups) femur, striatum, cerebellum, frontal cortex, and olfactory bulb manganese concentrations were also seen following gavage suggesting that dose rate is an important factor in the pharmacokinetics of oral manganese. These data will be used to refine physiologically based pharmacokinetic models, extending their utility for manganese risk assessment by including multiple dietary exposures.


Assuntos
Cloretos/farmacocinética , Dieta , Contaminação de Alimentos , Compostos de Manganês/farmacocinética , Poluentes Químicos da Água/farmacocinética , Administração Oral , Animais , Carga Corporal (Radioterapia) , Cloretos/administração & dosagem , Cloretos/toxicidade , Masculino , Compostos de Manganês/administração & dosagem , Intoxicação por Manganês/etiologia , Ratos Endogâmicos F344 , Medição de Risco , Distribuição Tecidual , Poluentes Químicos da Água/administração & dosagem , Poluentes Químicos da Água/toxicidade
17.
Biometals ; 28(3): 473-80, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25663418

RESUMO

The hypotransferrinemic (hpx) mouse is a model of inherited transferrin deficiency that originated several decades ago in the BALB/cJ mouse strain. Also known as the hpx mouse, this line is almost completely devoid of transferrin, an abundant serum iron-binding protein. Two of the most prominent phenotypes of the hpx mouse are severe anemia and tissue iron overload. These phenotypes reflect the essential role of transferrin in iron delivery to bone marrow and regulation of iron homeostasis. Over the years, the hpx mouse has been utilized in studies on the role of transferrin, iron and other metals in a variety of organ systems and biological processes. This review summarizes the lessons learned from these studies and suggests possible areas of future exploration using this versatile yet complex mouse model.


Assuntos
Transferrina/metabolismo , Animais , Modelos Animais de Doenças , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Proteínas de Ligação ao Ferro/metabolismo , Camundongos
18.
Haematologica ; 100(2): 167-77, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25425686

RESUMO

Mice have been essential for distinguishing the role of hepcidin in iron homeostasis. Currently, investigators monitor levels of murine hepatic hepcidin-1 mRNA as a surrogate marker for the bioactive hepcidin protein itself. Here, we describe and validate a competitive, enzyme-linked immunosorbent assay that quantifies hepcidin-1 in mouse serum and urine. The assay exhibits a biologically relevant lower limit of detection, high precision, and excellent linearity and recovery. We also demonstrate correlation between serum and urine hepcidin-1 values and validate the competitive enzyme-linked immunosorbent assay by analyzing plasma hepcidin response of mice to physiological challenges, including iron deficiency, iron overload, acute blood loss, and inflammation. Furthermore, we analyze multiple murine genetic models of iron dysregulation, including ß-thalassemia intermedia (Hbb(th3/+)), hereditary hemochromatosis (Hfe(-/-), Hjv(-/-), and Tfr2(Y245X/Y245X)), hypotransferrinemia (Trf(hpx/hpx)), heterozygous transferrin receptor 1 deficiency (Tfrc(+/-)) and iron refractory iron deficiency anemia (Tmprss6(-/-) and Tmprss6(hem8/hem8)). Novel compound iron metabolism mutants were also phenotypically characterized here for the first time. We demonstrate that serum hepcidin concentrations correlate with liver hepcidin mRNA expression, transferrin saturation and non-heme liver iron. In some circumstances, serum hepcidin-1 more accurately predicts iron parameters than hepcidin mRNA, and distinguishes smaller, statistically significant differences between experimental groups.


Assuntos
Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Hepcidinas/metabolismo , Homeostase/fisiologia , Ferro/administração & dosagem , Fígado/metabolismo , Anemia Ferropriva/genética , Anemia Ferropriva/metabolismo , Anemia Ferropriva/patologia , Animais , Células Cultivadas , Feminino , Hemocromatose/genética , Hemocromatose/metabolismo , Hemocromatose/patologia , Hepcidinas/genética , Homeostase/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Ferro/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Talassemia beta/genética , Talassemia beta/metabolismo , Talassemia beta/patologia
19.
J Biol Inorg Chem ; 19(6): 869-77, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24567067

RESUMO

The essential role of transferrin in mammalian iron metabolism is firmly established. Integral to our understanding of transferrin, studies in hypotransferrinemic mice, a model of inherited transferrin deficiency, have demonstrated that transferrin is essential for iron delivery for erythropoiesis and in the regulation of expression of hepcidin, a hormone that inhibits macrophage and enterocyte iron efflux. Here we investigate a potential role for transferrin in the distribution of three other physiologic metals, manganese, copper, and zinc. We first assessed metal content in transferrin-rich fractions of wild-type mouse sera and demonstrate that although both iron and manganese cofractionated predominantly with transferrin, the absolute levels of manganese are several orders of magnitude lower than those of iron. We next measured metal content in multiple tissues in wild-type and hypotransferrinemic mice of various ages. Tissue metal imbalances were severe for iron and minimal to moderate for some metals in some tissues in hypotransferrinemic mice. Metal levels measured in a transferrin-replete yet hepcidin-deficient and iron-loaded mouse strain suggested that the observed imbalances in tissue copper, zinc, and manganese levels were not all specific to hypotransferrinemic mice or caused directly by transferrin deficiency. Overall, our results suggest that transferrin does not have a primary role in the distribution of manganese, copper, or zinc to tissues and that the abnormalities observed in tissue manganese levels are not attributable to a direct role for transferrin in manganese metabolism but rather are attributable to an indirect effect of transferrin deficiency on hepcidin expression and/or iron metabolism.


Assuntos
Cobre/farmacocinética , Ferro/farmacocinética , Manganês/farmacocinética , Transferrina/metabolismo , Zinco/farmacocinética , Animais , Cobre/sangue , Ferro/sangue , Manganês/sangue , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Tecidual , Zinco/sangue
20.
PLoS One ; 9(1): e84906, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454764

RESUMO

The liver is the primary organ for storing iron and plays a central role in the regulation of body iron levels by secretion of the hormone Hamp1. Although many factors modulate Hamp1 expression, their regulatory mechanisms are poorly understood. Here, we used conditional knockout mice for the iron exporter ferroportin1 (Fpn1) to modulate tissue iron in specific tissues in combination with iron-deficient or iron-rich diets and transferrin (Tf) supplementation to investigate the mechanisms underlying Hamp1 expression. Despite liver iron overload, expression of bone morphogenetic protein 6 (Bmp6), a potent-stimulator of Hamp1 expression that is expressed under iron-loaded conditions, was decreased. We hypothesized that factors other than liver iron must play a role in controlling Bmp6 expression. Our results show that erythropoietin and Tf-bound iron do not underlie the down-regulation of Bmp6 in our mice models. Moreover, Bmp6 was down-regulated under conditions of high iron demand, irrespective of the presence of anemia. We therefore inferred that the signals were driven by high iron demand. Furthermore, we also confirmed previous suggestions that Tf-bound iron regulates Hamp1 expression via Smad1/5/8 phosphorylation without affecting Bmp6 expression, and the effect of Tf-bound iron on Hamp1 regulation appeared before a significant change in Bmp6 expression. Together, these results are consistent with novel mechanisms for regulating Bmp6 and Hamp1 expression.


Assuntos
Proteína Morfogenética Óssea 6/genética , Regulação da Expressão Gênica , Ferro/metabolismo , Fígado/metabolismo , Anemia Ferropriva/genética , Anemia Ferropriva/patologia , Animais , Proteína Morfogenética Óssea 6/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Regulação para Baixo/genética , Enterócitos/metabolismo , Enterócitos/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepcidinas/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Soro/metabolismo , Transdução de Sinais/genética , Proteínas Smad/metabolismo , Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA