Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Blood Purif ; 53(5): 373-378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37844557

RESUMO

Since SARS-CoV-2 spread through China at the end of 2019, COVID-19 has been probably the most difficult challenge in the last decades for healthcare systems all around the world, still representing a danger for fragile patients with different comorbidities. Chronic dialysis patients affected by COVID-19 experienced severe disease with a higher mortality rate compared to the general population. Morbidity and mortality of this severe acute respiratory syndrome depend on both acute respiratory failure and systemic immunological involvement with consequent inflammation-mediated injury. Indeed, the most important determining factor of COVID-19 severity is the strength of the so-called "cytokine storm" associated with SARS-CoV-2 infection. Therefore, this severe infection varies clinically from an asymptomatic condition to a generalized and violent inflammatory response and acute respiratory distress syndrome, with consequent pulmonary interstitial edema and a high risk of multi-organ failure. The use of extracorporeal therapies targeting cytokine clearance to improve patients' outcomes has been widely debated, especially in end-stage kidney disease's patients on maintenance dialysis or in individuals affected by acute kidney injury admitted to intensive care units. Different studies were conducted to demonstrate how specific dialyzers could decrease the COVID-19 inflammatory state. The aim of this narrative review was to summarize main studies about this topic, focusing primarily on the role of polymethylmethacrylate dialyzer and underlining pros and cons of this sorbent.

2.
Am J Respir Cell Mol Biol ; 69(3): 355-366, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37071847

RESUMO

Alpha-1 antitrypsin deficiency (AATD) is an underdiagnosed disorder associated with mutations in the SERPINA1 gene encoding alpha-1 antitrypsin (AAT). Severe AATD can manifest as pulmonary emphysema and progressive liver disease. Besides the most common pathogenic variants S (E264V) and Z (E342K), many rarer genetic variants of AAT have been found in patients and in the general population. Here we report a panel of new SERPINA1 variants, including 4 null and 16 missense alleles, identified among a cohort of individuals with suspected AATD whose phenotypic follow-up showed inconclusive or atypical results. Because the pathogenic significance of the missense variants was unclear purely on the basis of clinical data, the integration of computational, biochemical, and cellular studies was used to define the associated risk of disease. Established pathogenicity predictors and structural analysis identified a panel of candidate damaging mutations that were characterized by expression in mammalian cell models. Polymer formation, intracellular accumulation, and secretory efficiency were evaluated experimentally. Our results identified two AAT mutants with a Z-like polymerogenic severe deficiency profile (Smilano and Mcampolongo) and three milder variants (Xsarezzo, Pdublin, and Ctiberias). Overall, the experimentally determined behavior of the variants was in agreement with the pathogenicity scores of the REVEL (an ensemble method for predicting the pathogenicity of rare missense variants) predictor, supporting the utility of this bioinformatic tool in the initial assessment of newly identified amino acid substitutions of AAT. Our study, in addition to describing 20 new SERPINA1 variants, provides a model for a multidisciplinary approach to classification of rare AAT variants and their clinical impact on individuals with rare AATD genotypes.


Assuntos
Enfisema Pulmonar , Deficiência de alfa 1-Antitripsina , Humanos , Deficiência de alfa 1-Antitripsina/diagnóstico , Deficiência de alfa 1-Antitripsina/genética , Genótipo , Mutação/genética , Mutação de Sentido Incorreto/genética
3.
J Pathol ; 256(4): 402-413, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919276

RESUMO

Multiple myeloma (MM) progression and drug resistance depend on the crosstalk between MM cells and bone marrow (BM) fibroblasts (FBs). During monoclonal gammopathy of undetermined significance (MGUS) to MM transition, MM cell-derived exosomes (EXOs) reprogram the miRNA (miR) profile of FBs, inducing the overexpression miR-23b-3p, miR-27b-3p, miR-125b-5p, miR-214-3p, and miR-5100. Here, we demonstrate that the miR content of MM FB-derived EXOs (FB-EXOs) overlaps the miR profile of parental FBs by overexpressing comparable levels of miR-23b-3p, miR-27b-3p, miR-125b-5p, miR-214-3p, and miR-5100. Recipient MM cells co-cultured with MM FB-EXOs selectively overexpress only miR-214-3p and miR-5100 but not miR-23b-3p, miR-27b-3p, and miR-125b-5p, suggesting a putative selective transfer. MM cells express HOTAIR, TOB1-AS1, and MALAT1 lncRNAs. Transient transfection of MM cells with lnc·siRNAs demonstrates that HOTAIR, TOB1-AS1, and MALAT1 lncRNAs are sponges for miR-23b-3p, miR-27b-3p, and miR-125b-5p. Indeed, lncRNA knockdown significantly increased miR levels in U266 MM cells co-cultured with MM FB-EXOs. Selective miR-214-3p and miR-5100 overexpression modulates MAPK, PI3K/AKT/mTOR, and p53 pathways in MM cells. Interrogation using the DIANA tools algorithm and transient overexpression using miR mimic probes confirmed the involvement of miR-214-3p and miR-5100 and their target genes, PTEN and DUSP16, respectively, in the modulation of these intracellular pathways. Finally, the uptake of EXOs as well as miR-214-3p and miR-5100 overexpression increase MM cell proliferation and resistance to bortezomib-induced apoptosis by switching the balance between pro-/anti-apoptotic proteins. Overall, these data show that MM cells are not simply a container into which EXOs empty their cargo. On the contrary, tumour cells finely neutralize exosomal miRs via lncRNA expression to ensure their survival. © 2021 The Pathological Society of Great Britain and Ireland.


Assuntos
Exossomos , MicroRNAs , Mieloma Múltiplo , RNA Longo não Codificante , Exossomos/patologia , Fibroblastos/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Mieloma Múltiplo/patologia , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Cells ; 10(11)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34831408

RESUMO

Multiple myeloma (MM) progression closely depends on the bidirectional crosstalk between tumor cells and the surrounding microenvironment, which leads to the creation of a tumor supportive niche. Extracellular vesicles (EVs) have emerged as key players in the pathological interplay between the malignant clone and near/distal bone marrow (BM) cells through their biologically active cargo. Here, we describe the role of EVs derived from MM and BM cells in reprogramming the tumor microenvironment and in fostering bone disease, angiogenesis, immunosuppression, drug resistance, and, ultimately, tumor progression. We also examine the emerging role of EVs as new therapeutic agents for the treatment of MM, and their potential use as clinical biomarkers for early diagnosis, disease classification, and therapy monitoring.


Assuntos
Comunicação Celular , Progressão da Doença , Vesículas Extracelulares/metabolismo , Mieloma Múltiplo/patologia , Humanos , Terapia de Imunossupressão , Mieloma Múltiplo/diagnóstico , Neovascularização Patológica/patologia
5.
J Neurochem ; 157(4): 1153-1166, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32959393

RESUMO

Neural Progenitor Cells (NPCs) are multipotent cells that are able to self-renew and differentiate into neurons. The size of the initial pool of NPCs during the brain development strongly affects the number of neurons that compose cortical multi-layer during development. Gonadal hormones can influence the balance between self-renewal and differentiation processes. Herein, we investigated the role of dihydrotestosterone (DHT), the active metabolite of testosterone, in the regulation of NPC stemness and differentiation. First, we evaluated the expression of the androgen receptor (AR), the transcription factor activated by DHT that mediates the physiological effects of androgens, in NPCs. Western blot analysis showed that DHT-mediated activation of AR induces mitogenic signaling pathways (PI3K/AKT and MAPK/ERK) in NPCs, whereas luciferase activity assays demonstrated the induction of AR transcriptional activity. AR activation mediated by DHT treatment strongly increased the proliferation of NPCs and reduced their propensity to differentiate into neurons. Furthermore, the effects of AR activation were mediated, at least in part, by increased expression of Aldehyde Dehydrogenase 1 Family Member A3 enzyme (ALDH1A3). Pharmacological inhibition of ALDH activity with N,N-diethylaminobenzaldehyde (DEAB) reduced the effect of DHT on NPC proliferation in vitro. Furthermore, inhibition of AR activity by Enzalutamide reduced the NPC pool in the developing cortex of male C57/BL6 mouse embryos. These findings indicate that androgens engage an AR-dependent signaling pathway that impact on neurogenesis by increasing the NPC pool in the developing mouse cortex.


Assuntos
Córtex Cerebral/embriologia , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Receptores Androgênicos/metabolismo , Transdução de Sinais/fisiologia , Androgênios/farmacologia , Animais , Di-Hidrotestosterona/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA