Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 945: 173971, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876342

RESUMO

Pesticides are widely used in agriculture where they do not only reach their targets but also distribute to other environmental compartments and negatively affect non-target organisms. To prospectively assess their environmental risk, several tools and models using pesticide persistence (DT50) and leaching potential (groundwater ubiquity score (GUS), EXPOSIT) have been developed. Here, we simultaneously quantified 18 pesticides in soil and drainage water during a conventionally grown potato culture at field scale with high temporal resolution and compared our findings with predictions of the above models. Overall dissipations of all freshly applied compounds in soil were in line with published DT50 field values and their occurrences in drainage water were generally consistent with GUS and EXPOSIT models, respectively. In contrast, soil concentrations of the legacy pesticide atrazine and one of its transformation products (atrazine-2-hydroxy) were constant during the entire sampling campaign. Moreover, during peak discharge atrazine concentrations in drainage water were diluted whereas those of freshly applied pesticides were maximal. This difference demonstrates that the applied risk assessment tools were capable of predicting environmental concentrations and dissipation of pesticides at the short and medium time scale of a few half-lives after application, but fell short of capturing long-term trace residues.


Assuntos
Agricultura , Monitoramento Ambiental , Praguicidas , Poluentes do Solo , Solo , Solanum tuberosum , Poluentes Químicos da Água , Praguicidas/análise , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Solo/química , Agricultura/métodos , Modelos Químicos , Medição de Risco , Atrazina/análise
2.
Chimia (Aarau) ; 77(11): 750-757, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047842

RESUMO

Synthetic pesticides are widely applied in modern agriculture, where they are used against diseases, pests, and weeds to secure crop yield and quality. However, their intensive application has led to widespread contamination of the environment, including soils. Due to their inherent toxicity, they might pose a risk to soil health by causing harm to non-target organisms and disrupting ecosystem services in both agricultural and other exposed soils. Following the Swiss National Action Plan on the reduction of pesticide risks, Agroscope has conducted several soil monitoring studies that are briefly presented here. All of them resort to different multi-residue trace analytical approaches to simultaneously quantify up to about 150 modern pesticides by either accelerated solvent, or Quick, Easy, Cheap, Efficient, Rugged, Safe (QuEChERS) extraction, followed by separation and detection with liquid chromatography-triple quadrupole mass spectrometry. While partly still in progress, our investigations led to the following major findings this far: Multiple pesticides are commonly present in soils, with individual concentrations in agricultural soils often reaching up to a few tens of µg/kg. Pesticide occurrence and concentrations in agricultural soils primarily depend on land use, land use history and cultivated crops. Pesticides can prevail much longer than predicted by their half-lives, and were found in soils even decades after conversion from conventional to organic farming. Corresponding residual fractions can be in the order of a few percent of the originally applied amounts. We further found negative associations of pesticide residues with the abundance of beneficial soil life, underpinning their potential risk to the fertility of agricultural soils. Traces of pesticides are also detected in soils to which they were never applied, indicating contamination, e.g., via spray drift or atmospheric deposition. These results confirm the general notion of both scientists and legislators that prospective risk assessments (RA; as executed during registration and use authorization) should be confirmed and adjusted by retrospective RA (e.g., by environmental monitoring studies of currently used compounds) to jointly lead to an overall reduced environmental risk of pesticides.


Assuntos
Praguicidas , Solo , Suíça , Ecossistema , Estudos Prospectivos , Estudos Retrospectivos , Agricultura
3.
Sci Total Environ ; 878: 162995, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36948305

RESUMO

Pesticides constitute an integral part of today's agriculture. Their widespread use leads to ubiquitous contamination of the environment, including soils. Soils are a precious resource providing vital functions to society - thus, it is of utmost importance to thoroughly assess the risk posed by widespread pesticide contamination. The exposure of non-target organisms to pesticides in soils is challenging to quantify since only a fraction of the total pesticide concentration is bioavailable. Here we measured and compared the bioavailable and total concentrations of three fungicides - boscalid, azoxystrobin, and epoxiconazole - and evaluated which concentration best predicts effects on nine microbial markers. The experiments were performed in three different soils at five time points over two months employing nearly 900 microcosms with a model plant. The total and bioavailable concentrations of azoxystrobin and boscalid decreased steadily during the trial to levels of 25 % and 8 % of the original concentration, respectively, while the concentration of epoxiconazole in soil nearly remained unchanged. The bioavailable fraction generally showed a slightly faster and more pronounced decline. The microbial markers varied in their sensitivity to the three fungicides. Specific microbial markers, such as arbuscular mycorrhizal fungi, and bacterial and archaeal ammonia oxidizers, were most sensitive to each of the fungicide treatments, making them suitable indicators for pesticide effects. Even though the responses were predominantly negative, they were also transient, and the impact was no longer evident after two months. Finally, the bioavailable fraction did not better predict the relationships between exposure and effect than the total concentration. This study demonstrates that key microbial groups are temporarily susceptible to a single fungicide application, pointing to the risk that repeated use of pesticides may disrupt vital soil functions such as nutrient cycling in agroecosystems.


Assuntos
Fungicidas Industriais , Micorrizas , Praguicidas , Poluentes do Solo , Solo , Microbiologia do Solo , Praguicidas/análise , Micorrizas/química
4.
Chemosphere ; 199: 409-416, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29453067

RESUMO

Assessing the bioaccessibility of organic pollutants in contaminated soils is considered a complement to measurements of total concentrations in risk assessment and legislation. Consequently, methods for its quantification require validation with historically contaminated soils. In this study, 35 such soils were obtained from various locations in Switzerland and Cuba. They were exposed to different pollution sources (e.g., pyrogenic and petrogenic) at various distance (i.e., urban to rural) and were subject to different land use (e.g., urban gardening and forest). Passive equilibrium sampling with polyoxymethylene was used to determine freely dissolved concentrations (Cfree) of polycyclic aromatic hydrocarbons (PAHs), while sorptive bioaccessibility extraction (SBE) with silicone rods was used to determine the bioaccessible PAH concentrations (Cbioacc) of these soils. The organic carbon partition coefficients of the soils were highest for skeet soils, followed by traffic, urban garden and rural soils. Lowest values were obtained from soil exposed to petrogenic sources. Applicability of SBE to quantify Cbioacc was restricted by silicone rod sorption capacity, as expressed quantitatively by the Sorption Capacity Ratio (SCR); particularly for soils with very high KD. The source of contamination determined bioaccessible fractions (fbioacc). The smallest fbioacc were obtained with skeet soils (15%), followed by the pyrogenically influenced soils, rural soils, and finally, the petrogenically contaminated soil (71%). In conclusion, we present the potential and limitations of the SBE method to quantify bioaccessibility in real soils. These results can be used for additional development of this and similar bioaccessibility methods to guarantee sufficient sorption capacity to obtain reliable results.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Disponibilidade Biológica , Cuba , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Medição de Risco , Poluentes do Solo/farmacocinética , Suíça
5.
Sci Total Environ ; 644: 835-843, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743881

RESUMO

Passive sampling (PS, equally used for passive sampler) methods have successfully been applied in situ to quantify the bioavailability of hydrophobic organic compounds in air, water and sediments. However, very little is known on the applicability of PS in unsaturated soils. Here, we present the results of a greenhouse experiment in which we applied in situ PS methods in pots. Low density polyethylene (LDPE) and polydimethylsiloxane (PDMS) fibres with a newly developed PS holder were used to analyse freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations (Cfree) in a skeet shooting range soil and an uncontaminated control soil under water saturated and unsaturated conditions for up to nine months. A short exposure time of three months was not sufficient for the PDMS samplers to reach distribution equilibrium with the surrounding soil. Under saturated water conditions, the in situ results agreed well with measurements obtained from the conventional ex situ soil suspension method. They were in accordance with similar comparisons made in previous studies on sediments, as well as with model predictions. However, for unsaturated water conditions, the results differed considerably from the ex situ Cfree values, in particular for the light molecular weight (LMW) PAHs such as phenanthrene, fluoranthene, and pyrene. The results of the two in situ PS methods were in good agreement with each other under both soil water conditions, indicating that dissipation mechanisms, such as degradation or volatilization, led to a substantial decrease in Cfree under unsaturated conditions, especially for the LMW PAHs (log10KOW < 5.85) over a period of six months or more. Thus, in their current state of development, in situ PS methods can be used in soils under water-saturated conditions. However, an adequate method to correct for non-equilibrium conditions needs to be developed before they can be applied to unsaturated conditions, mainly for LMW PAHs.

6.
Environ Sci Pollut Res Int ; 24(14): 12860-12870, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28364208

RESUMO

Cuba is a country in transition with a considerable potential for economic growth. Soils are recipients and integrators of chemical pollution, a frequent negative side effect of increasing industrial activities. Therefore, we established a soil monitoring network to monitor polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in soils of Mayabeque, a Cuban province southeast of Havana. Concentrations of the sum of the 16 US EPA PAHs and of the seven IRMM PCBs in soils from 39 locations ranged from 20 to 106 µg kg-1 and from 1.1 to 7.6 µg kg-1, respectively. While such concentrations can be considered as low overall, they were in several cases correlated with the distance of sampling sites to presumed major emission sources, with some of the concomitantly investigated source diagnostic PAH ratios, and with black carbon content. The presented data adds to the limited information on soil pollution in the Caribbean region and serves as a reference time point before the onset of a possible further industrial development in Cuba. It also forms the basis to set up and adapt national environmental standards.


Assuntos
Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Região do Caribe , Cuba , Monitoramento Ambiental , Solo/química , Poluentes do Solo
7.
Environ Sci Technol ; 48(15): 8760-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25000358

RESUMO

Hyperspectral imaging with enhanced darkfield microscopy (HSI-M) possesses unique advantages in its simplicity and non-invasiveness. In consideration of the urgent need for profound knowledge on the behavior and effects of engineered nanoparticles (NPs), here, we determined the capability of HSI-M for examining cellular uptake of different metal-based NPs, including nanosized metals (silver and gold, both citrate stabilized), metal oxides (copper oxide and titanium dioxide), and CdSe/ZnS core/shell quantum dots at subtoxic concentrations. Specifically, we demonstrated that HSI-M can be used to detect and semi-quantify these NPs in the ciliated protozoan Tetrahymena thermophila as a model aquatic organism. Detection and semi-quantification were achieved on the basis of spectral libraries for the NPs suspended in extracellular substances secreted by this single-celled organism, accounting for matrix effects. HSI-M was able to differentiate between NP types, provided that spectral profiles were significantly different from each other. This difference, in turn, depended upon NP type, size, agglomeration status, and position relative to the focal plane. As an exception among the NPs analyzed in this study, titanium dioxide NPs showed spectral similarities compared to cell material of unexposed control cells, leading to false positives. High biological variability resulted in highly variable uptake of NPs in cells of the same sample as well as between different exposures. We therefore encourage the development of techniques able to reduce the currently long analysis times that still hamper the acquisition of statistically strong data sets. Overall, this study demonstrates the potential and challenges of HSI-M in monitoring cellular uptake of synthetic NPs.


Assuntos
Metais/metabolismo , Microscopia/métodos , Nanopartículas/metabolismo , Tetrahymena thermophila/metabolismo , Animais , Ouro/metabolismo , Nanopartículas Metálicas , Óxidos , Pontos Quânticos/metabolismo , Prata/metabolismo , Titânio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA