Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 104(33): 13331-6, 2007 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-17690250

RESUMO

Growth hormone receptor (GHR) has been demonstrated to be nuclear localized both in vivo and in vitro, but the significance of this observation has remained elusive. Here we show that nuclear GHR is strongly correlated with proliferative status in vivo by using a liver regeneration model. In vitro, nuclear translocation of the GH receptor is GH-dependent and appears to be mediated by the Importin system. Constitutive nuclear targeting of GHR in murine pro-B cells is associated with constitutive activation of STAT5, a transforming agent in lymphoma and other cell types. This activation is abrogated by inhibition of JAK2 and appears to be driven by autocrine murine GH action coupled with enhanced nuclear uptake of phospho-STAT5. Nuclear targeting induces dysregulated cell cycle progression in the pro-B cell line, associated with constitutive up-regulation of the proliferation inducers Survivin and Mybbp, the metastasis related Dysadherin, and other tumor markers. GHR nuclear-targeted cells generate aggressive metastatic tumors when injected into nude mice, which display nuclear localized GHR strikingly similar to that seen in human lymphomas. We conclude that aberrant nuclear localization of GHR is a marker of high proliferative status and is sufficient to induce tumorigenesis and tumor progression.


Assuntos
Núcleo Celular/metabolismo , Proliferação de Células , Transformação Celular Neoplásica , Animais , Transporte Proteico , Ratos
2.
Traffic ; 8(7): 795-807, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17537211

RESUMO

Dengue virus nonstructural protein 5 (NS5) is a large multifunctional protein with a central role in viral replication. We previously identified two nuclear localization sequences (NLSs) within the central region of dengue virus type-2 (DENV-2) NS5 ('aNLS' and 'bNLS') that are recognized by the importin alpha/beta and importin beta1 nuclear transporters, respectively. Here, we demonstrate the importance of the kinetics of NS5 nuclear localization to virus production for the first time and show that the aNLS is responsible. Site-specific mutations in the bipartite-type aNLS or bNLS region were introduced into a reporter plasmid encoding green fluorescent protein fused to the N-terminus of DENV-2 NS5, as well as into DENV-2 genomic length complementary DNA. Mutation of basic residues in the highly conserved region of the bNLS did not affect nuclear import of NS5. In contrast, mutations in either basic cluster of the aNLS decreased NS5 nuclear accumulation and reduced virus production, with the greatest reduction observed for mutation of the second cluster (K(387)K(388)K(389)); mutagenesis of both clusters abolished NS5 nuclear import and DENV-2 virus production completely. The latter appeared to relate to the impaired ability of virus lacking nuclear-localizing NS5, as compared with wild-type virus expressing nuclear-localizing NS5, to reduce interleukin-8 production as part of the antiviral response. The results overall indicate that NS5 nuclear localization through the aNLS is integral to viral infection, with significant implications for other flaviviruses of medical importance, such as yellow fever and West Nile viruses.


Assuntos
Núcleo Celular/metabolismo , Proteínas não Estruturais Virais/biossíntese , Proteínas não Estruturais Virais/química , Viroses/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Humanos , Dados de Sequência Molecular , Sinais de Localização Nuclear , Homologia de Sequência de Aminoácidos , Células Vero , Proteínas não Estruturais Virais/metabolismo
3.
Biochemistry ; 44(38): 12887-95, 2005 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-16171404

RESUMO

The matrix (M) protein of respiratory syncytial virus (RSV) plays an important role in virus assembly through specific interactions with RSV nucleocapsids and envelope glycoproteins in the cytoplasm as well as with the host cell membrane. We have previously shown that M localizes to the nucleus of infected cells at an early stage in the RSV infection cycle, where it may be instrumental in inhibiting host cell processes. The present study uses transient expression of M as well as a truncated green fluorescent protein (GFP) fusion derivative to show for the first time that M is able to localize in the nucleus in the absence of other RSV gene products, through the action of amino acids 110-183, encompassing the nucleic acid binding regions of the protein, that are sufficient to target GFP to the nucleus. Using native PAGE, ELISA-based binding assays, a novel Alphascreen assay, and an in vitro nuclear transport assay, we show that M is recognized directly by the importin beta1 nuclear import receptor, which mediates its nuclear import in concert with the guanine nucleotide-binding protein Ran. Retention of M in the nucleus through binding to nuclear components, probably mediated by the putative zinc finger domain of M, also contributes to M nuclear accumulation. This is the first report of the importin binding and nuclear import properties of a gene product from a negative sense RNA virus, with implications for the function of RSV M and possibly other viral M proteins in the nucleus of infected cells.


Assuntos
Núcleo Celular/virologia , Vírus Sinciciais Respiratórios/metabolismo , Proteínas da Matriz Viral/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Quelantes/farmacologia , Ácido Edético/farmacologia , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Ratos , Proteínas da Matriz Viral/química , Proteína ran de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA