Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Biol ; 22(2): e3002497, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358955

RESUMO

Online digital data from media platforms have the potential to complement biodiversity monitoring efforts. We propose a strategy for integrating these data into current biodiversity datasets in light of the Kunming-Montreal Global Biodiversity Framework.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais
2.
Nat Ecol Evol ; 7(6): 903-913, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37188966

RESUMO

Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.


Assuntos
Borboletas , Filogenia , Animais , Evolução Biológica , Borboletas/genética
3.
Sci Data ; 9(1): 382, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794183

RESUMO

Here, we present the largest, global dataset of Lepidopteran traits, focusing initially on butterflies (ca. 12,500 species records). These traits are derived from field guides, taxonomic treatments, and other literature resources. We present traits on wing size, phenology,voltinism, diapause/overwintering stage, hostplant associations, and habitat affinities (canopy, edge, moisture, and disturbance). This dataset will facilitate comparative research on butterfly ecology and evolution and our goal is to inspire future research collaboration and the continued development of this dataset.


Assuntos
Borboletas , Animais , Borboletas/genética , Ecologia , Fenótipo
4.
J Biogeogr ; 49(5): 979-992, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35506011

RESUMO

Aim: Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW). Location: Global. Taxon: All extant mammal species. Methods: Range maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species). Results: Range maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use. Main conclusion: Expert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control.

5.
Sci Rep ; 11(1): 20819, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675272

RESUMO

Yucca in the American desert Southwest typically flowers in early spring, but a well-documented anomalous bloom event occurred during an unusually cold and wet late fall and early winter 2018-2019. We used community science photographs to generate flowering presence and absence data. We fit phenoclimatic models to determine which climate variables are explanatory for normal flowering, and then we tested if the same conditions that drive normal blooming also drove the anomalous blooming event. Flowering for Yucca brevifolia (Joshua tree) and Yucca schidigera (Mojave yucca) is driven by complex, nonlinear interactions between daylength, temperature, and precipitation. To our surprise, early-season flowering odds are highest in colder and drier conditions, especially for Joshua trees, but increase with precipitation late-season. However, the models used to fit normal blooming overpredicted the number of anomalous blooms compared to what was actually observed. Thus, predicting anomalous flowering events remains a challenge for quantitative phenological models. Because our model overpredicted the number of anomalous blooms, there are likely other factors, such as biotic interactions or other seasonal factors, which may be especially important in controlling what is presumed to be rare, out-of-season flowering in desert-adapted Yucca.

6.
Ecol Lett ; 24(12): 2687-2699, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34636143

RESUMO

Insect phenological lability is key for determining which species will adapt under environmental change. However, little is known about when adult insect activity terminates and overall activity duration. We used community-science and museum specimen data to investigate the effects of climate and urbanisation on timing of adult insect activity for 101 species varying in life history traits. We found detritivores and species with aquatic larval stages extend activity periods most rapidly in response to increasing regional temperature. Conversely, species with subterranean larval stages have relatively constant durations regardless of regional temperature. Species extended their period of adult activity similarly in warmer conditions regardless of voltinism classification. Longer adult durations may represent a general response to warming, but voltinism data in subtropical environments are likely underreported. This effort provides a framework to address the drivers of adult insect phenology at continental scales and a basis for predicting species response to environmental change.


Assuntos
Características de História de Vida , Animais , Clima , Mudança Climática , Insetos , Estações do Ano , Temperatura
7.
iScience ; 24(4): 102239, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33997666

RESUMO

Broad-scale, quantitative assessments of insect biodiversity and the factors shaping it remain particularly poorly explored. Here we undertook a spatial phylogenetic analysis of North American butterflies to test whether climate stability and temperature gradients have shaped their diversity and endemism. We also performed the first quantitative comparisons of spatial phylogenetic patterns between butterflies and flowering plants. We expected concordance between the two groups based on shared historical environmental drivers and presumed strong butterfly-host plant specializations. We instead found that biodiversity patterns in butterflies are strikingly different from flowering plants, especially warm deserts. In particular, butterflies show different patterns of phylogenetic clustering compared with flowering plants, suggesting differences in habitat conservation between the two groups. These results suggest that shared biogeographic histories and trophic associations do not necessarily assure similar diversity outcomes. The work has applied value in conservation planning, documenting warm deserts as a North American butterfly biodiversity hotspot.

8.
Glob Chang Biol ; 27(4): 892-903, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33249694

RESUMO

A wave of green leaves and multi-colored flowers advances from low to high latitudes each spring. However, little is known about how flowering offset (i.e., ending of flowering) and duration of populations of the same species vary along environmental gradients. Understanding these patterns is critical for predicting the effects of future climate and land-use change on plants, pollinators, and herbivores. Here, we investigated potential climatic and landscape drivers of flowering onset, offset, and duration of 52 plant species with varying key traits. We generated phenology estimates using >270,000 community-science photographs and a novel presence-only phenometric estimation method. We found longer flowering durations in warmer areas, which is more obvious for summer-blooming species compared to spring-bloomers driven by their strongly differing offset dynamics. We also found that higher human population density and higher annual precipitation are associated with delayed flowering offset and extended flowering duration. Finally, offset of woody perennials was more sensitive than herbaceous species to both climate and urbanization drivers. Empirical forecast models suggested that flowering durations will be longer in 2030 and 2050 under representative concentration pathway (RCP) 8.5, especially for summer-blooming species. Our study provides critical insight into drivers of key flowering phenophases and confirms that Hopkins' Bioclimatic Law also applies to flowering durations for summer-blooming species and herbaceous spring-blooming species.


Assuntos
Mudança Climática , Urbanização , Flores , Humanos , Estações do Ano , Temperatura
9.
Ecol Evol ; 10(14): 6967-6977, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32760505

RESUMO

Reconstructing ecological niche evolution can provide insight into the biogeography and diversification of evolving lineages. However, comparative phylogenetic methods may infer the history of ecological niche evolution inaccurately because (a) species' niches are often poorly characterized; and (b) phylogenetic comparative methods rely on niche summary statistics rather than full estimates of species' environmental tolerances. Here, we propose a new framework for coding ecological niches and reconstructing their evolution that explicitly acknowledges and incorporates the uncertainty introduced by incomplete niche characterization. Then, we modify existing ancestral state inference methods to leverage full estimates of environmental tolerances. We provide a worked empirical example of our method, investigating ecological niche evolution in the New World orioles (Aves: Passeriformes: Icterus spp.). Temperature and precipitation tolerances were generally broad and conserved among orioles, with niche reduction and specialization limited to a few terminal branches. Tools for performing these reconstructions are available in a new R package called nichevol.

10.
Appl Plant Sci ; 8(1): e11315, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993257

RESUMO

PREMISE: Citizen science platforms for sharing photographed digital vouchers, such as iNaturalist, are a promising source of phenology data, but methods and best practices for use have not been developed. Here we introduce methods using Yucca flowering phenology as a case study, because drivers of Yucca phenology are not well understood despite the need to synchronize flowering with obligate pollinators. There is also evidence of recent anomalous winter flowering events, but with unknown spatiotemporal extents. METHODS: We collaboratively developed a rigorous, consensus-based approach for annotating and sharing whole plant and flower presence data from iNaturalist and applied it to Yucca records. We compared spatiotemporal flowering coverage from our annotations with other broad-scale monitoring networks (e.g., the National Phenology Network) in order to determine the unique value of photograph-based citizen science resources. RESULTS: Annotations from iNaturalist were uniquely able to delineate extents of unusual flowering events in Yucca. These events, which occurred in two different regions of the Desert Southwest, did not appear to disrupt the typical-period flowering. DISCUSSION: Our work demonstrates that best practice approaches to scoring iNaturalist records provide fine-scale delimitation of phenological events. This approach can be applied to other plant groups to better understand how phenology responds to changing climate.

11.
Biodivers Data J ; 7: e33303, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30918448

RESUMO

Insects are possibly the most taxonomically and ecologically diverse class of multicellular organisms on Earth. Consequently, they provide nearly unlimited opportunities to develop and test ecological and evolutionary hypotheses. Currently, however, large-scale studies of insect ecology, behavior, and trait evolution are impeded by the difficulty in obtaining and analyzing data derived from natural history observations of insects. These data are typically highly heterogeneous and widely scattered among many sources, which makes developing robust information systems to aggregate and disseminate them a significant challenge. As a step towards this goal, we report initial results of a new effort to develop a standardized vocabulary and ontology for insect natural history data. In particular, we describe a new database of representative insect natural history data derived from multiple sources (but focused on data from specimens in biological collections), an analysis of the abstract conceptual areas required for a comprehensive ontology of insect natural history data, and a database of use cases and competency questions to guide the development of data systems for insect natural history data. We also discuss data modeling and technology-related challenges that must be overcome to implement robust integration of insect natural history data.

12.
Proc Biol Sci ; 284(1862)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28878061

RESUMO

Species invasions represent a significant dimension of global change yet the dynamics of invasions remain poorly understood and are considered rather unpredictable. We explored interannual dynamics of the invasion process in the Eurasian collared dove (Streptopelia decaocto) and tested whether the advance of the invasion front of the species in North America relates to centrality (versus peripherality) within its estimated fundamental ecological niche. We used ecological niche modelling approaches to estimate the dimensions of the fundamental ecological niche on the Old World distribution of the species, and then transferred that model to the New World as measures of centrality versus peripherality within the niche for the species. Although our hypothesis was that the invasion front would advance faster over more favourable (i.e. more central) conditions, the reverse was the case: the invasion expanded faster in areas presenting less favourable (i.e. more peripheral) conditions for the species as it advanced across North America. This result offers a first view of a predictive approach to the dynamics of species' invasions, and thereby has relevant implications for the management of invasive species, as such a predictive understanding would allow better anticipation of coming steps and advances in the progress of invasions, important to designing and guiding effective remediation and mitigation efforts.


Assuntos
Columbidae , Espécies Introduzidas , Animais , Ecossistema , América do Norte , Dinâmica Populacional
13.
Bioinformatics ; 32(19): 3049-50, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27288494

RESUMO

UNLABELLED: Biodiversity studies are relying increasingly on primary biodiversity records (PBRs) for modelling and analysis. Because biodiversity data are frequently 'harvested'-i.e. not collected by the researcher for that particular study, but obtained from data aggregators such as the Global Biodiversity Information Facility-researchers need to be aware of strengths and weaknesses of their data before they venture into further analysis. R is becoming a lingua franca of data exploration and analysis. Here, we describe an R package, bdvis, which facilitates efforts to understand the gaps and strengths of PBR data with quick and useful visualization functions. AVAILABILITY AND IMPLEMENTATION: The full code of the R package bdvis, along with instructions on how to install and use it, is available via CRAN - The Comprehensive R Archive Network (http://cran.r-project.org/web/packages/bdvis/index.html) and in the corresponding author's main GitHub repository: http://www.github.com/vijaybarve/bdvis The source code is licensed under CC0 CONTACT: vijay.barve@gmail.com.


Assuntos
Biodiversidade , Linguagens de Programação , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA