Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biophys J ; 122(19): 3937-3949, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37621088

RESUMO

Polarimetric second harmonic generation (SHG) microscopy imaging is employed to investigate the ultrastructural organization of biological and biomimetic partially oriented fibrillar structures. The linear polarization-in polarization-out SHG microscopy measurements are conducted with rat tail tendon, rabbit cornea, pig cartilage, and biomimetic meso-tetra(4-sulfonatophenyl)porphine (TPPS4) cylindrical aggregates, which represent different two- and three-dimensional (2D and 3D) configurations of C6 symmetry fibril structures in the focal volume (voxel) of the microscope. The polarization-in polarization-out imaging of rat tail tendon reveals that SHG intensity is affected by parallel/antiparallel arrangements of the fibers, and achiral (R) and chiral (C) susceptibility component ratio values change by tilting the tendon fibers out of image plane. The R ratio changes for the 2D crossing fibers observed in cornea tissue. The 3D crossing of fibers also affects R ratio in cartilage tissue. The distinctly different dependence of R on crossing and tilting of fibers is demonstrated in collagen and TPPS4 aggregates, due to the achiral molecular susceptibility ratio having values below and above 3, respectively. The polarimetric microscopy results correspond well with the analytical expressions of amplitude and R and C ratios dependence on the crossing angle of the fibers. The experimentally measured SHG intensity and R and C ratio maps are consistent with the computational modeling of various fiber configurations presented in the preceding article. The demonstrated SHG intensity and R and C ratio dependencies on fibril configurations provide the basis for interpreting polarimetric SHG microscopy images in terms of 3D ultrastructural organization of fibers in each voxel of the samples.

2.
Biophys J ; 122(19): 3924-3936, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37608550

RESUMO

Second-harmonic generation (SHG) in biological tissues originates predominantly from noncentrosymmetric fibrillar structures partially oriented within a focal volume (voxel) of a multiphoton excitation microscope. This study is aimed to elucidate fibrillar organization factors influencing SHG intensity, as well as achiral, R, and chiral, C, nonlinear susceptibility tensor component ratios. SHG response is calculated for various configurations of fibrils in a voxel using the digital nonlinear microscope. The R and C ratios are calculated using linear incident and outgoing polarization states that simulate polarization-in polarization-out polarimetric measurements. The investigation shows strong SHG intensity dependence on parallel/antiparallel fiber organization. The R and C ratios are strongly influenced by the fiber chirality, tilting of the fibers out of the image plane, and crossing of the fibers. The computational modeling provides the basis for the interpretation of polarimetric SHG microscopy images in terms of the ultrastructural organization of fibers in each voxel of the samples. The modeling results are employed in the accompanying paper to investigate the ultrastructures with parallel/antiparallel fibers and two-dimensional and tree-dimensional crossing fibers in biological and biomimetic structures.

3.
Nanophotonics ; 12(11): 2061-2071, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215945

RESUMO

Second harmonic generation (SHG) microscopy is a commonly used technique to study the organization of collagen within tissues. However, individual collagen fibrils, which have diameters much smaller than the resolution of most optical systems, have not been extensively investigated. Here we probe the structure of individual collagen fibrils using polarization-resolved SHG (PSHG) microscopy and atomic force microscopy. We find that longitudinally polarized light occurring at the edge of a focal volume of a high numerical aperture microscope objective illuminated with linearly polarized light creates a measurable variation in PSHG signal along the axis orthogonal to an individual collagen fibril. By comparing numerical simulations to experimental data, we are able to estimate parameters related to the structure and chirality of the collagen fibril without tilting the sample out of the image plane, or cutting tissue at different angles, enabling chirality measurements on individual nanostructures to be performed in standard PSHG microscopes. The results presented here are expected to lead to a better understanding of PSHG results from both collagen fibrils and collagenous tissues. Further, the technique presented can be applied to other chiral nanoscale structures such as microtubules, nanowires, and nanoribbons.

4.
J Biophotonics ; 16(5): e202200284, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36651498

RESUMO

We employ wide-field second harmonic generation (SHG) microscopy together with nonlinear Stokes polarimetry for quick ultrastructural investigation of large sample areas (700 µm × 700 µm) in thin histology sections. The Stokes vector components for SHG are obtained from the polarimetric measurements with incident and outgoing linear and circular polarization states. The Stokes components are used to construct the images of polarimetric parameters and deduce the maps of ultrastructural parameters of achiral and chiral nonlinear susceptibility tensor components ratios and cylindrical axis orientation in fibrillar materials. The large area imaging was employed for lung tumor margin investigations. The imaging shows reduced SHG intensity, increased achiral susceptibility ratio values, and preferential orientation of collagen strands along the boarder of tumor margin. The wide-field Stokes polarimetric SHG microscopy opens a possibility of quick large area imaging of ultrastructural parameters of tissue collagen, which can be used for nonlinear histopathology investigations.


Assuntos
Microscopia , Microscopia de Geração do Segundo Harmônico , Microscopia de Geração do Segundo Harmônico/métodos , Análise Espectral , Colágeno/química , Miócitos Cardíacos
5.
Sci Rep ; 12(1): 20713, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456811

RESUMO

The extracellular matrix (ECM) is amongst many tissue components affected by cancer, however, morphological changes of the ECM are not well-understood and thus, often omitted from diagnostic considerations. Polarimetric second-harmonic generation (P-SHG) microscopy allows for visualization and characterization of collagen ultrastructure in the ECM, aiding in better understanding of the changes induced by cancer throughout the tissue. In this paper, a large region of hematoxylin and eosin (H&E) stained human lung section, encompassing a tumor margin, connecting a significant tumor portion to normal tissue was imaged with P-SHG microscopy. The resulting polarimetric parameters were utilized in principal components analysis and unsupervised K-Means clustering to separate normal- and tumor-like tissue. Consequently, a pseudo-color map of the clustered tissue regions is generated to highlight the irregularity of the ECM collagen structure throughout the region of interest and to identify the tumor margin, in the absence of morphological characteristics of the cells.


Assuntos
Neoplasias Pulmonares , Microscopia de Geração do Segundo Harmônico , Humanos , Margens de Excisão , Análise Espectral , Matriz Extracelular
6.
Sci Rep ; 12(1): 10290, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717344

RESUMO

The extracellular matrix (ECM) collagen undergoes major remodeling during tumorigenesis. However, alterations to the ECM are not widely considered in cancer diagnostics, due to mostly uniform appearance of collagen fibers in white light images of hematoxylin and eosin-stained (H&E) tissue sections. Polarimetric second-harmonic generation (P-SHG) microscopy enables label-free visualization and ultrastructural investigation of non-centrosymmetric molecules, which, when combined with texture analysis, provides multiparameter characterization of tissue collagen. This paper demonstrates whole slide imaging of breast tissue microarrays using high-throughput widefield P-SHG microscopy. The resulting P-SHG parameters are used in classification to differentiate tumor from normal tissue, resulting in 94.2% for both accuracy and F1-score, and 6.3% false discovery rate. Subsequently, the trained classifier is employed to predict tumor tissue with 91.3% accuracy, 90.7% F1-score, and 13.8% false omission rate. As such, we show that widefield P-SHG microscopy reveals collagen ultrastructure over large tissue regions and can be utilized as a sensitive biomarker for cancer diagnostics and prognostics studies.


Assuntos
Neoplasias , Microscopia de Geração do Segundo Harmônico , Colágeno/química , Matriz Extracelular/patologia , Aprendizado de Máquina , Neoplasias/diagnóstico , Neoplasias/patologia , Prognóstico , Microscopia de Geração do Segundo Harmônico/métodos
7.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454798

RESUMO

Personalized cancer theranostics has a potential to increase efficiency of early cancer diagnostics and treatment, and to reduce negative side-effects. Protein-stabilized gold nanoclusters may serve as theranostic agents. To make gold nanoclusters personalized and highly biocompatible, the clusters were stabilized with human plasma proteins. Optical properties of synthesized nanoclusters were investigated spectroscopically, and possible biomedical application was evaluated using standard cell biology methods. The spectroscopic investigations of human plasma proteins stabilized gold nanoclusters revealed that a wide photoluminescence band in the optical tissue window is suitable for cancer diagnostics. High-capacity generation of singlet oxygen and other reactive oxygen species was also observed. Furthermore, the cluster accumulation in cancer cells and the photodynamic effect were evaluated. The results demonstrate that plasma proteins stabilized gold nanoclusters that accumulate in breast cancer cells and are non-toxic in the dark, while appear phototoxic under irradiation with visible light. The results positively confirm the utility of plasma protein stabilized gold nanoclusters for the use in cancer diagnostics and treatment.

8.
Phys Chem Chem Phys ; 23(36): 20201-20217, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34473146

RESUMO

Microscopic theory for the second harmonic generation in a helical molecular system is developed in the minimal coupling representation including non-local interaction effects. At the second order to the field we find a compact expression which combines dipolar, quadrupolar and magnetic contributions. A detailed derivation of the response is performed to specifically isolate the quadratic coupling terms, which we denote as the K coupling. Applying the theory to a helical macromolecule we find that the dipolar and quadrupolar contributions reflect the symmetry properties of the system and its homogeneity, while the K coupling contribution reveals inhomogeneities of the system.

9.
BMC Mol Cell Biol ; 22(1): 38, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256704

RESUMO

BACKGROUND: Proper muscle function is heavily dependent on highly ordered protein complexes. UNC45 is a USC (named since this region is shared by three proteins UNC45/CRO1/She4P) chaperone that is necessary for myosin incorporation into the thick filaments. UNC45 is expressed throughout the entire Drosophila life cycle and it has been shown to be important during late embryogenesis when initial muscle development occurs. However, the effects of UNC45 manipulation at later developmental times, after muscle development, have not yet been studied. MAIN RESULTS: UNC45 was knocked down with RNAi in a manner that permitted survival to the pupal stage, allowing for characterization of sarcomere organization in the well-studied third instar larvae. Second harmonic generation (SHG) microscopy revealed changes in the striated pattern of body wall muscles as well as a reduction of signal intensity. This observation was confirmed with immunofluorescence and electron microscopy imaging, showing diminished UNC45 signal and disorganization of myosin and z-disk proteins. Concomitant alterations in both synaptic physiology and locomotor function were also found. Both nerve-stimulated response and spontaneous vesicle release were negatively affected, while larval movement was impaired. CONCLUSIONS: This study highlights the dependency of normal sarcomere structure on UNC45 expression. We confirm the known role of UNC45 for myosin localization and further show the I-Z-I complex is also disrupted. This suggests a broad need for UNC45 to maintain sarcomere integrity. Newly discovered changes in synaptic physiology reveal the likely presence of a homeostatic response to partially maintain synaptic strength and muscle function.


Assuntos
Larva/metabolismo , Chaperonas Moleculares/metabolismo , Miosinas/metabolismo , Sarcômeros/metabolismo , Animais , Drosophila , Proteínas de Drosophila/metabolismo , Técnicas de Silenciamento de Genes , Microscopia Eletrônica , Chaperonas Moleculares/genética , Miosinas/química
10.
Lab Invest ; 100(10): 1280-1287, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32737408

RESUMO

Polarization-sensitive second harmonic generation (SHG) microscopy is an established imaging technique able to provide information related to specific molecular structures including collagen. In this investigation, polarization-sensitive SHG microscopy was used to investigate changes in the collagen ultrastructure between histopathology slides of normal and diseased human thyroid tissues including follicular nodular disease, Grave's disease, follicular variant of papillary thyroid carcinoma, classical papillary thyroid carcinoma, insular or poorly differentiated carcinoma, and anaplastic or undifferentiated carcinoma ex vivo. The second-order nonlinear optical susceptibility tensor component ratios, χ(2)zzz'/χ(2)zxx' and χ(2)xyz'/χ(2)zxx', were obtained, where χ(2)zzz'/χ(2)zxx' is a structural parameter and χ(2)xyz'/χ(2)zxx' is a measure of the chirality of the collagen fibers. Furthermore, the degree of linear polarization (DOLP) of the SHG signal was measured. A statistically significant increase in χ(2)zzz'/χ(2)zxx' values for all the diseased tissues except insular carcinoma and a statistically significant decrease in DOLP for all the diseased tissues were observed compared to normal thyroid. This finding indicates a higher ultrastructural disorder in diseased collagen and provides an innovative approach to discriminate between normal and diseased thyroid tissues that is complementary to standard histopathology.


Assuntos
Colágeno/metabolismo , Microscopia de Geração do Segundo Harmônico/métodos , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Carcinoma Papilar, Variante Folicular/diagnóstico por imagem , Carcinoma Papilar, Variante Folicular/metabolismo , Carcinoma Papilar, Variante Folicular/patologia , Diferenciação Celular , Colágeno/química , Colágeno/ultraestrutura , Diagnóstico Diferencial , Doença de Graves/diagnóstico por imagem , Doença de Graves/metabolismo , Doença de Graves/patologia , Humanos , Microscopia de Geração do Segundo Harmônico/instrumentação , Microscopia de Geração do Segundo Harmônico/estatística & dados numéricos , Câncer Papilífero da Tireoide/diagnóstico por imagem , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Doenças da Glândula Tireoide/diagnóstico por imagem , Doenças da Glândula Tireoide/metabolismo , Doenças da Glândula Tireoide/patologia , Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/metabolismo , Nódulo da Glândula Tireoide/patologia
11.
Biomed Opt Express ; 11(4): 1851-1863, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32341852

RESUMO

Polarimetric second-harmonic generation (P-SHG) microscopy is used to quantify the structural alteration of collagen in stage-I,-II and -III non-small cell lung carcinoma (NSCLC) ex vivo tissue. The achiral and chiral molecular second-order susceptibility tensor components ratios (R and C, respectively), the degree of linear polarization (DLP) and the in-plane collagen fiber orientation (δ) were extracted. Further, texture analysis was performed on the SHG intensity, R, C, DLP and δ. The distributions of R, C, DLP and δ as well as the textural features of entropy, correlation and contrast show significant differences between normal and tumor tissues.

12.
J Biophotonics ; 13(4): e201960167, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31975533

RESUMO

Polarization-resolved second-harmonic generation (P-SHG) microscopy is a technique capable of characterizing nonlinear optical properties of noncentrosymmetric biomaterials by extracting the nonlinear susceptibility tensor components ratio χzzz2'/χzxx2' , with z-axis parallel and x-axis perpendicular to the C6 symmetry axis of molecular fiber, such as a myofibril or a collagen fiber. In this paper, we present two P-SHG techniques based on incoming and outgoing circular polarization states for a fast extraction of χzzz2'/χzxx2' : A dual-shot configuration where the SHG circular anisotropy generated using incident right- and left-handed circularly-polarized light is measured; and a single-shot configuration for which the SHG circular anisotropy is measured using only one incident circular polarization state. These techniques are used to extract the χzzz2'/χzxx2' of myosin fibrils in the body wall muscles of Drosophila melanogaster larva. The results are in good agreement with values obtained from the double Stokes-Mueller polarimetry. The dual- and single-shot circular anisotropy measurements can be used for fast imaging that is independent of the in-plane orientation of the sample. They can be used for imaging of contracting muscles, or for high throughput imaging of large sample areas.


Assuntos
Drosophila melanogaster , Miosinas , Microscopia de Geração do Segundo Harmônico , Animais , Microscopia de Polarização , Músculos
13.
Biomed Opt Express ; 10(10): 5025-5030, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31646027

RESUMO

Polarimetric second-harmonic generation (P-SHG) microscopy is used to characterize the composition and polarity of collagen fibers in various regions of human cardiac tissue. The boundary between the cardiac conduction system and myocardium is shown to possess a distinct composition of collagen compared to other regions in the heart. Moreover, collagen fibers in this region are macroscopically organized in a unipolar arrangement, which may consequently aid in effective propagation of the electrical signal through the cardiac conduction system.

14.
Biomed Opt Express ; 10(10): 5130-5135, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31646035

RESUMO

Wide-field second harmonic generation (SHG) microscopy was developed using a high-power (> 4 W) and high-repetition-rate (MHz range) laser oscillator to achieve fast SHG imaging over a large area (400 µm × 400 µm). The microscope was used for high spatial resolution imaging of contracting muscles in live Drosophila melanogaster larvae. Anisotropic and isotropic bands of striated muscle were distinguished, allowing accurate determination of sarcomere length and SHG intensity from individual sarcomeres. Therefore, wide-field SHG microscopy has applications in basic contractility research and studying arrhythmias, muscular dystrophies and pharmaceutical effects on the muscle contraction dynamics of sarcomeres.

15.
Sci Rep ; 9(1): 12488, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462663

RESUMO

Nonlinear optical properties of collagen type-I are investigated in thin tissue sections of pig tendon as a research model using a complete polarimetric second-harmonic generation (P-SHG) microscopy technique called double Stokes-Mueller polarimetry (DSMP). Three complex-valued molecular susceptibility tensor component ratios are extracted. A significant retardance is observed between the chiral susceptibility component and the achiral components, while the achiral components appear to be in phase with each other. The DSMP formalism and microscopy measurements are further used to explain and experimentally validate the conditions required for SHG circular dichroism (SHG-CD) of collagen to occur. The SHG-CD can be observed with the microscope when: (i) the chiral second-order susceptibility tensor component has a non-zero value, (ii) a phase retardance is present between the chiral and achiral components of the second-order susceptibility tensor and (iii) the collagen fibres are tilted out of the image plane. Both positive and negative areas of SHG-CD are observed in microscopy images, which relates to the anti-parallel arrangement of collagen fibres in different fascicles of the tendon. The theoretical formalism and experimental validation of DSMP imaging technique opens new opportunities for ultrastructural characterisation of chiral molecules, in particular collagen, and provides basis for the interpretation of SHG-CD signals. The nonlinear imaging of chiroptical parameters offers new possibilities to further improve the diagnostic sensitivity and/or specificity of nonlinear label-free histopathology.


Assuntos
Dicroísmo Circular , Colágeno/química , Microscopia , Modelos Teóricos , Tendões/química , Animais , Suínos
16.
Front Oncol ; 9: 272, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058080

RESUMO

Thin tissue sections of normal and tumorous pancreatic tissues stained with hematoxylin and eosin were investigated using multiphoton excitation fluorescence (MPF), second harmonic generation (SHG), and third harmonic generation (THG) microscopies. The cytoplasm, connective tissue, collagen and extracellular structures are visualized with MPF due to the eosin stain, whereas collagen is imaged with endogenous SHG contrast that does not require staining. Cellular structures, including membranous interfaces and nuclear components, are seen with THG due to the aggregation of hematoxylin dye. Changes in the collagen ultrastructure in pancreatic cancer were investigated by a polarization-sensitive SHG microscopy technique, polarization-in, polarization-out (PIPO) SHG. This involves measuring the orientation of the linear polarization of the SHG signal as a function of the linear polarization orientation of the incident laser radiation. From the PIPO SHG data, the second-order non-linear optical susceptibility ratio, χ(2) zzz '/χ(2) zxx ', was obtained that serves as a structural parameter for characterizing the tissue. Furthermore, by assuming C6 symmetry, an additional second-order non-linear optical susceptibility ratio, χ(2) xyz '/χ(2) zxx ', was obtained, which is a measure of the chirality of the collagen fibers. Statistically-significant differences in the χ(2) zzz '/χ(2) zxx ' values were found between tumor and normal pancreatic tissues in periductal, lobular, and parenchymal regions, whereas statistically-significant differences in the full width at half maximum (FWHM) of χ(2) xyz '/χ(2) zxx ' occurrence histograms were found between tumor and normal pancreatic tissues in periductal and parenchymal regions. Additionally, the PIPO SHG data were used to determine the degree of linear polarization (DOLP) of the SHG signal, which indicates the relative linear depolarization of the signal. Statistically-significant differences in DOLP values were found between tumor and normal pancreatic tissues in periductal and parenchymal regions. Hence, the differences observed in the χ(2) zzz '/χ(2) zxx ' values, the FWHM of χ(2) xyz '/χ(2) zxx ' values and the DOLP values could potentially be used to aid pathologists in diagnosing pancreatic cancer.

17.
J Biophotonics ; 12(1): e201800241, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30288949

RESUMO

Polarization-dependent second-harmonic generation (P-SHG) microscopy is used to characterize molecular nonlinear optical properties of collagen and determine a three-dimensional (3D) orientation map of collagen fibers within a pig tendon. C6 symmetry is used to determine the nonlinear susceptibility tensor components ratios in the molecular frame of reference χzzz2/χzxx2 and χxyz2/χzxx2 , where the latter is a newly extracted parameter from the P-SHG images and is related to the chiral structure of collagen. The χxyz2/χzxx2 is observed for collagen fibers tilted out of the image plane, and can have positive or negative values, revealing the relative polarity of collagen fibers within the tissue. The P-SHG imaging was performed using a linear polarization-in polarization-out (PIPO) method on thin sections of pig tendon cut at different angles. The nonlinear chiral properties of collagen can be used to construct the 3D organization of collagen in the tissue and determine the orientation-independent molecular susceptibility ratios of collagen fibers in the molecular frame of reference.


Assuntos
Colágeno/química , Microscopia de Geração do Segundo Harmônico/métodos , Tendão do Calcâneo , Animais , Estereoisomerismo , Suínos
18.
J Biophotonics ; 11(12): e201800036, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29971932

RESUMO

Polarization-sensitive second harmonic generation (p-SHG) is a nonlinear optical microscopy technique that has shown great promise in biomedicine, such as in detecting changes in the collagen ultrastructure of the tumor microenvironment. However, the complex nature of light-tissue interactions and the heterogeneity of biological samples pose challenges in creating an analytical and experimental quantification platform for tissue characterization via p-SHG. We present a Monte Carlo (MC) p-SHG simulation model based on double Stokes-Mueller polarimetry for the investigation of nonlinear light-tissue interaction. The MC model predictions are compared with experimental measurements of second-order nonlinear susceptibility component ratio and degree of polarization (DOP) in rat-tail collagen. The observed trends in the behavior of these parameters as a function of tissue thickness, as well as the overall extent of agreement between MC and experimental results, are discussed. High sensitivities of the susceptibility ratio and DOP are observed for the varying tissue thickness on the incoming fundamental light propagation pathway.


Assuntos
Microscopia , Método de Monte Carlo , Algoritmos , Animais , Colágeno/metabolismo , Processamento de Imagem Assistida por Computador , Ratos
19.
Biomed Opt Express ; 8(10): 4504-4513, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29082080

RESUMO

Third harmonic generation (THG) microscopy can exploit endogenous harmonophores such as pigment macromolecules for enhanced image contrast, and therefore can be used without exogenous contrast agents. Previous studies have established that carotenoid compounds are ideal harmonophores for THG microscopy; we therefore sought to determine whether THG from endogenous carotenoid-derived compounds, such as retinal in photoreceptor cells, could serve as a new label-free method for developmental studies. Here we study the development of the pupal eye in Drosophila melanogaster and determine the localization of rhodopsin using THG microscopy technique. Additionally, by altering the chromophore or the opsin protein we were able to detect changes in both the retinal distribution morphology and in THG intensity age-dependent profiles. These results demonstrate that THG microscopy can be used to detect altered photoreceptor development and may be useful in clinically relevant conditions associated with photoreceptor degeneration.

20.
Opt Express ; 25(12): 13174-13189, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788853

RESUMO

An experimental implementation of the nonlinear Stokes-Mueller polarimetric (NSMP) microscopy in third-harmonic generation modality is presented. The technique is able to extract all eight 2D-accessible χ(3) components for any sample from 64 polarization measurements, and can be applied to noninvasive ultrastructural characterization. The polarization signature of an isotropic glass coverslip is presented, and carotenoid crystallites in the root of orange carrot (Daucus carota) are investigated, showing complex χ(3) components with a significant chiral contribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA