Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(5): e1009553, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015044

RESUMO

Bacterial infection results in a veritable cascade of host responses, both local and systemic. To study the initial stages of host-pathogen interaction in living tissue we use spatially-temporally controlled in vivo models. Using this approach, we show here that within 4 h of a uropathogenic Escherichia coli (UPEC) infection in the kidney, an IFNγ response is triggered in the spleen. This rapid infection-mediated inter-organ communication was found to be transmitted via nerve signalling. Bacterial expression of the toxin α-hemolysin directly and indirectly activated sensory neurons, which were identified in the basement membrane of renal tubules. Nerve activation was transmitted via the splenic nerve, inducing upregulation of IFNγ in the marginal zones of the spleen that led to increasing concentrations of IFNγ in the circulation. We found that IFNγ modulated the inflammatory signalling generated by renal epithelia cells in response to UPEC infection. This demonstrates a new concept in the host response to kidney infection; the role of nerves in sensing infection and rapidly triggering a systemic response which can modulate inflammation at the site of infection. The interplay between the nervous and immune systems is an exciting, developing field with the appealing prospect of non-pharmaceutical interventions. Our study identifies an important role for systemic neuro-immune communication in modulating inflammation during the very first hours of a local bacterial infection in vivo.


Assuntos
Infecções por Escherichia coli/complicações , Interações Hospedeiro-Patógeno , Inflamação/patologia , Interferon gama/metabolismo , Rim/microbiologia , Neuroimunomodulação , Baço/metabolismo , Animais , Células Epiteliais/microbiologia , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Escherichia coli Uropatogênica/fisiologia
2.
J Exp Med ; 216(8): 1904-1924, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31196979

RESUMO

Rheumatoid arthritis-associated joint pain is frequently observed independent of disease activity, suggesting unidentified pain mechanisms. We demonstrate that antibodies binding to cartilage, specific for collagen type II (CII) or cartilage oligomeric matrix protein (COMP), elicit mechanical hypersensitivity in mice, uncoupled from visual, histological and molecular indications of inflammation. Cartilage antibody-induced pain-like behavior does not depend on complement activation or joint inflammation, but instead on tissue antigen recognition and local immune complex (IC) formation. smFISH and IHC suggest that neuronal Fcgr1 and Fcgr2b mRNA are transported to peripheral ends of primary afferents. CII-ICs directly activate cultured WT but not FcRγ chain-deficient DRG neurons. In line with this observation, CII-IC does not induce mechanical hypersensitivity in FcRγ chain-deficient mice. Furthermore, injection of CII antibodies does not generate pain-like behavior in FcRγ chain-deficient mice or mice lacking activating FcγRs in neurons. In summary, this study defines functional coupling between autoantibodies and pain transmission that may facilitate the development of new disease-relevant pain therapeutics.


Assuntos
Anticorpos Monoclonais/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Artralgia/imunologia , Artrite Reumatoide/imunologia , Autoanticorpos/imunologia , Cartilagem/imunologia , Neurônios/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Artralgia/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Autoanticorpos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Proteína de Matriz Oligomérica de Cartilagem/imunologia , Colágeno Tipo II/imunologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Receptores de IgG/deficiência , Receptores de IgG/genética
3.
Pain Manag ; 6(3): 265-84, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27086843

RESUMO

Pain is one of the most challenging symptoms for patients with rheumatoid arthritis (RA). RA-related pain is frequently considered to be solely a consequence of inflammation in the joints; however, recent studies show that multiple mechanisms are involved. Indeed, RA pain may start even before the disease manifests, and frequently does not correlate with the degree of inflammation or pharmacological management. In this aspect, animal studies have the potential to provide new insights into the pathology that initiate and maintain pain in RA. The focus of this review is to describe the most commonly used animal models for studies of RA pathology, which have also been utilized in pain research, and to summarize findings providing potential clues to the mechanisms involved in the regulation of RA-induced pain.


Assuntos
Artrite Reumatoide/complicações , Modelos Animais de Doenças , Dor/fisiopatologia , Animais , Humanos , Mediadores da Inflamação/metabolismo , Dor/etiologia , Dor/metabolismo , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
4.
Ann Rheum Dis ; 75(4): 730-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26613766

RESUMO

OBJECTIVE: An interesting and so far unexplained feature of chronic pain in autoimmune disease is the frequent disconnect between pain and inflammation. This is illustrated well in rheumatoid arthritis (RA) where pain in joints (arthralgia) may precede joint inflammation and persist even after successful anti-inflammatory treatment. In the present study, we have addressed the possibility that autoantibodies against citrullinated proteins (ACPA), present in RA, may be directly responsible for the induction of pain, independent of inflammation. METHODS: Antibodies purified from human patients with RA, healthy donors and murinised monoclonal ACPA were injected into mice. Pain-like behaviour was monitored for up to 28 days, and tissues were analysed for signs of pathology. Mouse osteoclasts were cultured and stimulated with antibodies, and supernatants analysed for release of factors. Mice were treated with CXCR1/2 (interleukin (IL) 8 receptor) antagonist reparixin. RESULTS: Mice injected with either human or murinised ACPA developed long-lasting pronounced pain-like behaviour in the absence of inflammation, while non-ACPA IgG from patients with RA or control monoclonal IgG were without pronociceptive effect. This effect was coupled to ACPA-mediated activation of osteoclasts and release of the nociceptive chemokine CXCL1 (analogue to human IL-8). ACPA-induced pain-like behaviour was reversed with reparixin. CONCLUSIONS: The data suggest that CXCL1/IL-8, released from osteoclasts in an autoantibody-dependent manner, produces pain by activating sensory neurons. The identification of this new pain pathway may open new avenues for pain treatment in RA and also in other painful diseases associated with autoantibody production and/or osteoclast activation.


Assuntos
Artralgia/imunologia , Autoanticorpos/imunologia , Quimiocina CXCL1/imunologia , Citrulina/imunologia , Interleucina-8/imunologia , Nociceptividade/fisiologia , Osteoclastos/imunologia , Animais , Autoanticorpos/farmacologia , Comportamento Animal/efeitos dos fármacos , Estudos de Casos e Controles , Quimiocina CXCL1/efeitos dos fármacos , Quimiocinas , Inflamação , Interleucina-8/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nociceptividade/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Receptores de Interleucina-8/antagonistas & inibidores , Sulfonamidas/farmacologia
5.
Pharmacol Biochem Behav ; 122: 1-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24582849

RESUMO

It has been shown that imipramine, a tricyclic antidepressant (TCA), is a potent analgesic agent. However, the effect of imipramine on visceral pain has not been extensively investigated. In the current study, our aim was to characterise the putative analgesic effect of intravenous imipramine on visceral pain in rats. Our second aim was to assess the involvement of serotonergic (5-HT2,3,4) and noradrenergic (α(2A, 2B, 2C)) receptor subtypes in this putative antinociceptive effect of imipramine. Male Sprague Dawley rats (250-300 g) were implanted with venous catheters for drug administration and implanted with enamelled nichrome electrodes for electromyography of the external oblique muscles. Noxious visceral stimulation was applied via by colorectal distension (CRD). The visceromotor responses (VMRs) to CRD were quantified electromyographically before and after imipramine administration at 5, 15, 30, 60, 90 and 120 min. In the antagonist groups, the agents were administered 10 min before imipramine. The administration of imipramine (5-40 mg/kg) produced a dose-dependent reduction in VMR. The administration of yohimbine (a nonselective α2-adrenoceptor antagonist, 1 mg/kg), BRL-44408 (an α(2A)-adrenoceptor antagonist, 1 mg/kg) or MK-912 (an α2C-adrenoceptor antagonist, 300 µg/kg) but not imiloxan (an α(2B)-adrenoceptor antagonist, 1 mg/kg) inhibited the antinociceptive effect of imipramine (20 mg/kg). Additionally, ketanserin (a 5-HT2 receptor antagonist, 0.5, 1, and 2 mg/kg) and GR113808 (a 5-HT4 receptor antagonist, 1 mg/kg) enhanced, and ondansetron (a 5-HT3 receptor antagonist, 0.5, 1, and 2 mg/kg) failed to alter the imipramine-induced antinociceptive effect. Our data demonstrated that, in the CDR-induced rat visceral pain model, intravenous imipramine appeared to have antinociceptive potential and that α(2A)-/α(2C)-adrenoceptors and 5-HT2/5-HT4 receptors may be responsible for the antinociceptive effect of imipramine on visceral pain in rats.


Assuntos
Analgésicos/administração & dosagem , Imipramina/administração & dosagem , Receptores Adrenérgicos alfa 2/fisiologia , Receptores 5-HT2 de Serotonina/fisiologia , Receptores 5-HT4 de Serotonina/fisiologia , Dor Visceral/tratamento farmacológico , Administração Intravenosa , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Colo/patologia , Relação Dose-Resposta a Droga , Masculino , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Reto/patologia , Antagonistas da Serotonina/farmacologia , Resultado do Tratamento , Dor Visceral/patologia
6.
PLoS One ; 8(9): e75543, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086560

RESUMO

Lipoxins and resolvins have anti-inflammatory and pro-resolving actions and accumulating evidence indicates that these lipid mediators also attenuate pain-like behavior in a number of experimental models of inflammation and tissue injury-induced pain. The present study was undertaken to assess if spinal administration of lipoxin A4 (LXA4) or 17 (R)-resolvin D1 (17(R)-RvD1) attenuates mechanical hypersensitivity in the carrageenan model of peripheral inflammation in the rat. Given the emerging role of spinal cytokines in the generation and maintenance of inflammatory pain we measured cytokine levels in the cerebrospinal fluid (CSF) after LXA4 or 17(R)-RvD1 administration, and the ability of these lipid metabolites to prevent stimuli-induced release of cytokines from cultured primary spinal astrocytes. We found that intrathecal bolus injection of LXA4 and17(R)-RvD1 attenuated inflammation-induced mechanical hypersensitivity without reducing the local inflammation. Furthermore, both LXA4 and 17(R)-RvD1 reduced carrageenan-induced tumor necrosis factor (TNF) release in the CSF, while only 17(R)-RvD1attenuated LPS and IFN-γ-induced TNF release in astrocyte cell culture. In conclusion, this study demonstrates that lipoxins and resolvins potently suppress inflammation-induced mechanical hypersensitivity, possibly by attenuating cytokine release from spinal astrocytes. The inhibitory effect of lipoxins and resolvins on spinal nociceptive processing puts them in an intriguing position in the search for novel pain therapeutics.


Assuntos
Anti-Inflamatórios/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Hipersensibilidade/tratamento farmacológico , Inflamação/tratamento farmacológico , Lipoxinas/farmacologia , Medula Espinal/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Edema/tratamento farmacológico , Edema/metabolismo , Humanos , Hipersensibilidade/metabolismo , Inflamação/metabolismo , Interferon gama/metabolismo , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Lipoxinas/metabolismo , Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
J Neurosci Res ; 91(2): 300-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23184810

RESUMO

Astrocyte activation is an important feature in many disorders of the central nervous system, including chronic pain conditions. Activation of astrocytes is characterized by a change in morphology, including hypertrophy and increased size of processes, proliferation, and an increased production of proinflammatory mediators. The xanthine derivatives pentoxifylline and propentofylline are commonly used experimentally as glial inhibitors. These compounds are generally believed to attenuate glial activity by raising cyclic AMP (cAMP) levels and inhibiting glial tumor necrosis factor (TNF) production. In the present study, we show that these substances inhibit TNF and serum-induced astrocyte proliferation and signaling through the mammalian target of rapamycin (mTOR) pathway, demonstrated by decreased levels of phosphorylated S6 kinase (S6K), commonly used as a marker of mTOR complex (mTORC) activation. Furthermore, we show that pentoxifylline and propentofylline also inhibit JNK and p38, but not ERK, activation induced by TNF. In addition, the JNK antagonist SP600125, but not the p38 inhibitor SB203580, prevents TNF-induced activation of S6 kinase, suggesting that pentoxifylline and propentofylline may regulate mTORC activity in spinal astrocytes partially through inhibition of the JNK pathway. Our results suggest that pentoxifylline and propentofylline inhibit astrocyte activity in a broad fashion by attenuating flux through specific pathways.


Assuntos
Astrócitos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fármacos Neuroprotetores/farmacologia , Pentoxifilina/farmacologia , Sirolimo/metabolismo , Xantinas/farmacologia , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Masculino , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/citologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
8.
Arthritis Rheum ; 64(12): 3886-96, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22933386

RESUMO

OBJECTIVE: Pain is one of the most debilitating symptoms reported by rheumatoid arthritis (RA) patients. While the collagen antibody-induced arthritis (CAIA) model is used for studying the effector phase of RA pathologic progression, it has not been evaluated as a model for studies of pain. Thus, this study was undertaken to examine pain-like behavior induced by anticollagen antibodies and to assess the effect of currently prescribed analgesics for RA. In addition, the involvement of spinal glia in antibody-induced pain was explored. METHODS: CAIA was induced in mice by intravenous injection of a collagen antibody cocktail, followed by intraperitoneal injection of lipopolysaccharide. Disease severity was assessed by visual and histologic examination. Pain-like behavior and the antinociceptive effect of diclofenac, buprenorphine, gabapentin, pentoxifylline, and JNK-interacting protein 1 were examined in mechanical stimulation experiments. Spinal astrocyte and microglia reactivity were investigated by real-time polymerase chain reaction and immunohistochemistry. RESULTS: Following the induction of CAIA, mice developed transient joint inflammation. In contrast, pain-like behavior was observed prior to, and outlasted, the visual signs of arthritis. Whereas gabapentin and buprenorphine attenuated mechanical hypersensitivity during both the inflammatory and postinflammatory phases of arthritis, diclofenac was antinociceptive only during the inflammatory phase. Spinal astrocytes and microglia displayed time-dependent signs of activation, and inhibition of glial activity reversed CAIA-induced mechanical hypersensitivity. CONCLUSION: CAIA represents a multifaceted model for studies exploring the mechanisms of pain induced by inflammation in the articular joint. Our findings of a time-dependent prostaglandin and spinal glial contribution to antibody-induced pain highlight the importance of using appropriate disease models to assess joint-related pain.


Assuntos
Artralgia/etiologia , Artrite Experimental/complicações , Neuroglia/patologia , Prostaglandinas/metabolismo , Coluna Vertebral/patologia , Aminas/uso terapêutico , Analgésicos/uso terapêutico , Animais , Artralgia/tratamento farmacológico , Artralgia/metabolismo , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Buprenorfina/uso terapêutico , Ácidos Cicloexanocarboxílicos/uso terapêutico , Diclofenaco/uso terapêutico , Modelos Animais de Doenças , Gabapentina , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Neuroglia/metabolismo , Coluna Vertebral/metabolismo , Fatores de Tempo , Resultado do Tratamento , Ácido gama-Aminobutírico/uso terapêutico
9.
Pharmacol Rep ; 60(6): 872-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19211979

RESUMO

Serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibitors represent important targets for the development of new treatments for detrusor overactivity and urinary incontinence. The present study was undertaken to investigate the effects of the forced swimming test (FST) on the contractile response of isolated rat detrusor muscle and to examine the effects of in vivo treatments of fluoxetine and sertraline on altered detrusor muscle contractility. Fluoxetine (20 mg/kg ip) and sertraline (10 mg/kg ip) were administered once a day for 14 days. Rats were exposed to the FST on the 15th day. After the test, detrusor muscles were removed and placed in organ baths, and the contraction responses induced by carbachol, potassium chloride (KCl) and electrical field stimulation (EFS) were recorded. The contractile responses of detrusor muscle strips to carbachol and electrical field stimulation were found to be increased at all carbachol doses and frequencies, respectively. FST also increased the contractile responses to KCl, which is used to test the differences in postreceptor-mediated contractions. The hypercontractile responses of detrusor strips to carbachol, EFS and KCl were abolished by treatment with both fluoxetine and sertraline. These treatments also decreased the immobility duration in the FST consistent with an antidepressant-like effect in this test. The results of this study provide the first evidence that FST increases contractility of the rat detrusor muscle, and this hypercontractility was abolished by chronic treatments of fluoxetine and sertraline at antidepressant doses by decreasing the postreceptor-mediated events.


Assuntos
Antidepressivos/farmacologia , Depressão/fisiopatologia , Fluoxetina/farmacologia , Contração Muscular/efeitos dos fármacos , Sertralina/farmacologia , Bexiga Urinária/efeitos dos fármacos , Animais , Canais de Cálcio/fisiologia , Carbacol/farmacologia , Estimulação Elétrica , Masculino , Atividade Motora/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Ratos , Ratos Wistar , Natação , Bexiga Urinária/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA