Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Plant Sci ; 14: 1006099, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056505

RESUMO

Ascochyta blight (AB) is a major biotic constraint to chickpea production internationally. The disease caused by the phytopathogenic fungus Ascochyta rabiei is highly favored by prolonged spells of low temperature and high humidity. The disease scenario is expected to aggravate in the near future as a result of rapidly changing climatic conditions and the emergence of fungicide-resistant pathogen strains. Tapping into host-plant resistance is the most logical way to preempt such a crisis. Presently, high levels of stable resistance against AB are yet to be identified from the chickpea gene pool. The present study was aimed at facilitating this process through multi-environment testing of chickpea genotypes. Using the GGE biplot analysis method, we could identify three genotypes, viz., ICCV 16508, ICCV 16513, and ICCV 16516, from the International Ascochyta Blight Nursery, which showed consistent moderate resistance reactions across all the tested environments. Moreover, we were able to evaluate the test locations for their suitability to support AB screening trials. Ludhiana and Palampur locations were identified as the most ideal for continual screening in the future. Controlled environment screening at the ICRISAT location offered to reduce large plant populations to small meaningful sizes through initial screening under controlled environment conditions. This study will further improve the scope of phenotyping and sources of stable resistance to be utilized in future AB resistance breeding programs.

2.
Plant Dis ; 105(7): 2001-2010, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33599514

RESUMO

Anthracnose is a prevalent disease of mungbean in Asian countries and Sub-Saharan Africa. It is caused by multiple Colletotrichum species. The high levels of anthracnose resistance in mungbean have not been studied in depth in India, but genetic resistance is desired. In this study, we identified the causal agent of mungbean anthracnose in two regions of India as Colletotrichum truncatum through morphological and molecular methods. A set of 296 mungbean mini-core accessions developed by WorldVeg was screened under a natural disease pressure from July to September (kharif season) in 2016, 2017, and 2018 in Hyderabad (a hot spot for anthracnose) to identify anthracnose resistance. Based on disease severity scores, 22 accessions were consistently anthracnose resistant under the categories of immune, highly resistant, and resistant with scores ranging from ≥1.0 to ≤3.0 during the period of study. Furthermore, based on the agronomic performance, anthracnose resistance in Hyderabad, and other desirable traits, a subset of 74 mungbean accessions was selected from 296 mini-core accessions. These accessions were evaluated under natural disease pressure from July to September in 2018 and 2019 in Palampur (another hot spot for anthracnose) to determine the variation in anthracnose resistance. Out of the 74 accessions, two accessions were resistant in 2018; in 2019, one was immune, nine were highly resistant, and 15 were resistant. Combined analysis of variance of 65 accessions common in Hyderabad and Palampur revealed highly significant effects of environment, genotype (accessions), and genotype × environment interaction on the disease severity. The combined GGE biplot analysis of data across years and locations confirmed that the seven accessions MC-24, MC-51, MC-75, MC-127, MC-207, MC-208, and MC-292 were resistant during 2016 to 2018 in Hyderabad, and only in 2019 in Palampur, and the same accessions were moderately resistant in 2018 in Palampur. The seven resistant accessions identified from both test locations could be used as potential donors in the anthracnose resistance breeding program.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Colletotrichum , Vigna , Genótipo , Melhoramento Vegetal
3.
PLoS One ; 15(10): e0240589, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33075085

RESUMO

Chickpea (Cicer arietinum L.) is the second largest pulse crop grown worldwide and ascochyta blight caused by Ascochyta rabiei (Pass.) Labr. is the most devastating disease of the crop in all chickpea growing areas across the continents. The pathogen A. rabiei is highly variable. The resistant sources available are not sufficient and new sources needs to be identified from time to time as resistance breakdown in existing chickpea varieties is very frequent due to fast evolution of new pathotypes of the pathogen. Therefore, this work was undertaken to evaluate the existing chickpea germplasm diversity conserved in Indian National Genebank against the disease under artificial epiphytotic conditions. An artificial standard inoculation procedure was followed for uniform spread of the pathogen. During the last five winter seasons from 2014-15 to 2018-19, a total of 1,970 accessions have been screened against the disease and promising accessions were identified and validated. Screening has resulted in identification of some promising chickpea accessions such as IC275447, IC117744, EC267301, IC248147 and EC220109 which have shown the disease resistance (disease severity score ≤3) in multiple seasons and locations. Promising accessions can serve as the potential donors in chickpea improvement programs. The frequency of resistant and moderately resistant type accessions was comparatively higher in accessions originated from Southwest Asian countries particularly Iran and Syria than the accessions originated from Indian sub-continent. Further large scale screening of chickpea germplasm originated from Southwest Asia may result in identifying new resistant sources for the disease.


Assuntos
Cicer/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Cicer/microbiologia , Cruzamentos Genéticos , Irã (Geográfico) , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Síria
4.
Sci Rep ; 8(1): 12527, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30131572

RESUMO

The value of exotic wheat genetic resources for accelerating grain yield gains is largely unproven and unrealized. We used next-generation sequencing, together with multi-environment phenotyping, to study the contribution of exotic genomes to 984 three-way-cross-derived (exotic/elite1//elite2) pre-breeding lines (PBLs). Genomic characterization of these lines with haplotype map-based and SNP marker approaches revealed exotic specific imprints of 16.1 to 25.1%, which compares to theoretical expectation of 25%. A rare and favorable haplotype (GT) with 0.4% frequency in gene bank identified on chromosome 6D minimized grain yield (GY) loss under heat stress without GY penalty under irrigated conditions. More specifically, the 'T' allele of the haplotype GT originated in Aegilops tauschii and was absent in all elite lines used in study. In silico analysis of the SNP showed hits with a candidate gene coding for isoflavone reductase IRL-like protein in Ae. tauschii. Rare haplotypes were also identified on chromosomes 1A, 6A and 2B effective against abiotic/biotic stresses. Results demonstrate positive contributions of exotic germplasm to PBLs derived from crosses of exotics with CIMMYT's best elite lines. This is a major impact-oriented pre-breeding effort at CIMMYT, resulting in large-scale development of PBLs for deployment in breeding programs addressing food security under climate change scenarios.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Grão Comestível/genética , Abastecimento de Alimentos , Frequência do Gene , Haplótipos , Temperatura Alta , Melhoramento Vegetal , Banco de Sementes , Análise de Sequência de DNA , Estresse Fisiológico , Triticum/classificação , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA