Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sci Rep ; 14(1): 18902, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143145

RESUMO

The COVID-19 pandemic has disrupted people's lives and caused significant economic damage around the world, but its impact on people's mental health has not been paid due attention by the research community. According to anecdotal data, the pandemic has raised serious concerns related to mental health among the masses. However, no systematic investigations have been conducted previously on mental health monitoring and, in particular, detection of post-traumatic stress disorder (PTSD). The goal of this study is to use classical machine learning approaches to classify tweets into COVID-PTSD positive or negative categories. To this end, we employed various Machine Learning (ML) classifiers, to segregate the psychotic difficulties with the user's PTSD in the context of COVID-19, including Random Forest Support Vector Machine, Naïve Bayes, and K-Nearest Neighbor. ML models are trained and tested using various combinations of feature selection strategies to get the best possible combination. Based on our experimentation on real-world dataset, we demonstrate our model's effectiveness to perform classification with an accuracy of 83.29% using Support Vector Machine as classifier and unigram as a feature pattern.


Assuntos
COVID-19 , Aprendizado de Máquina , Mídias Sociais , Transtornos de Estresse Pós-Traumáticos , Máquina de Vetores de Suporte , Sobreviventes , Humanos , Transtornos de Estresse Pós-Traumáticos/psicologia , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Pós-Traumáticos/epidemiologia , COVID-19/psicologia , COVID-19/epidemiologia , Sobreviventes/psicologia , SARS-CoV-2/isolamento & purificação , Teorema de Bayes , Saúde Mental
2.
Sci Rep ; 13(1): 19213, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932424

RESUMO

Intelligent health monitoring systems are becoming more important and popular as technology advances. Nowadays, online services are replacing physical infrastructure in several domains including medical services as well. The COVID-19 pandemic has also changed the way medical services are delivered. Intelligent appliances, smart homes, and smart medical systems are some of the emerging concepts. The Internet of Things (IoT) has changed the way communication occurs alongside data collection sources aided by smart sensors. It also has deployed artificial intelligence (AI) methods for better decision-making provided by efficient data collection, storage, retrieval, and data management. This research employs health monitoring systems for heart patients using IoT and AI-based solutions. Activities of heart patients are monitored and reported using the IoT system. For heart disease prediction, an ensemble model ET-CNN is presented which provides an accuracy score of 0.9524. The investigative data related to this system is very encouraging in real-time reporting and classifying heart patients with great accuracy.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Internet das Coisas , Humanos , Inteligência Artificial , Pandemias
3.
IEEE J Biomed Health Inform ; 27(10): 4684-4695, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37486831

RESUMO

Federated learning (FL) is receiving much attention in the Healthcare Internet of Things (H-IoT) to support various instantaneous E-health services. Today, the deployment of FL suffers from several challenges, such as high training latency and data privacy leakage risks, especially for resource-constrained medical devices. In this article, we develop a three-layer FL architecture to decrease training latency by introducing split learning into FL. We formulate a long-term optimization problem to minimize the local model training latency while preserving the privacy of the original medical data in H-IoT. Specially, a Privacy-ware Model Partitioning Algorithm (PMPA) is proposed to solve the formulated problem based on the Lyapunov optimization theory. In PMPA, the local model is partitioned properly between a resource-constrained medical end device and an edge server, which meets privacy requirements and energy consumption constraints. The proposed PMPA is separated into two phases. In the first phase, a partition point set is obtained using Kullback-Leibler (KL) divergence to meet the privacy requirement. In the second phase, we employ the model partitioning function, derived through Lyapunov optimization, to select the partition point from the partition point set that that satisfies the energy consumption constraints. Simulation results show that compared with traditional FL, the proposed algorithm can significantly reduce the local training latency. Moreover, the proposed algorithm improves the efficiency of medical image classification while ensuring medical data security.


Assuntos
Algoritmos , Internet das Coisas , Humanos , Simulação por Computador , Privacidade , Atenção à Saúde
5.
PeerJ Comput Sci ; 9: e1374, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346660

RESUMO

The Vehicular ad-Hoc Network (VANET) is envisioned to ensure wireless transmission with ultra-high reliability. In the presence of fading and mobility of vehicles, error-free information between Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) requires extensive investigation. The current literature lacks in designing an ultra-reliable comprehensive tractable model for VANET using millimeter wave. Ultra-reliable communication is needed to support autonomous vehicular communication. This article aims to provide a comprehensive tractable model for VANET over millimeter waves using Space-Time-Block-Coding (STBC) concatenated with Reed Solomon (RS) coding. The designed model provides the fastest way of designing and analyzing VANET networks on 60 GHz. By using the derived BER expressions and Reed Solomon coded doppler expression ultra-reliable vehicular networks can be build meeting the demands of massive growing volume of traffic. The performance of the model is compared with previous BER computational techniques and existing VANET communication systems, i.e., IEEE 802.11bd and 3rd generation partnership project vehicle to everything (3GPP V2X). The findings show that our proposed approach outperforms IEEE 802.11bd and the results are comparable with V2X NR. Packet Error Rate (PER), Packet Reception Ratio (PRR) and throughput are used as performance metrics. We have also evaluated the model on higher velocities of vehicles. Further, the simulation and numerical findings show that the proposed system surpass the existing BER results comprising of various modulation and coding techniques. The simulation results are verified by the numerical results there-by, showing the accuracy of our derived expressions.

6.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112457

RESUMO

The emergence of the Internet of Things (IoT) technology has brought about tremendous possibilities, but at the same time, it has opened up new vulnerabilities and attack vectors that could compromise the confidentiality, integrity, and availability of connected systems. Developing a secure IoT ecosystem is a daunting challenge that requires a systematic and holistic approach to identify and mitigate potential security threats. Cybersecurity research considerations play a critical role in this regard, as they provide the foundation for designing and implementing security measures that can address emerging risks. To achieve a secure IoT ecosystem, scientists and engineers must first define rigorous security specifications that serve as the foundation for developing secure devices, chipsets, and networks. Developing such specifications requires an interdisciplinary approach that involves multiple stakeholders, including cybersecurity experts, network architects, system designers, and domain experts. The primary challenge in IoT security is ensuring the system can defend against both known and unknown attacks. To date, the IoT research community has identified several key security concerns related to the architecture of IoT systems. These concerns include issues related to connectivity, communication, and management protocols. This research paper provides an all-inclusive and lucid review of the current state of anomalies and security concepts related to the IoT. We classify and analyze prevalent security distresses regarding IoT's layered architecture, including connectivity, communication, and management protocols. We establish the foundation of IoT security by examining the current attacks, threats, and cutting-edge solutions. Furthermore, we set security goals that will serve as the benchmark for assessing whether a solution satisfies the specific IoT use cases.

7.
Neural Comput Appl ; 35(19): 13921-13934, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34248288

RESUMO

Patients with deaths from COVID-19 often have co-morbid cardiovascular disease. Real-time cardiovascular disease monitoring based on wearable medical devices may effectively reduce COVID-19 mortality rates. However, due to technical limitations, there are three main issues. First, the traditional wireless communication technology for wearable medical devices is difficult to satisfy the real-time requirements fully. Second, current monitoring platforms lack efficient streaming data processing mechanisms to cope with the large amount of cardiovascular data generated in real time. Third, the diagnosis of the monitoring platform is usually manual, which is challenging to ensure that enough doctors online to provide a timely, efficient, and accurate diagnosis. To address these issues, this paper proposes a 5G-enabled real-time cardiovascular monitoring system for COVID-19 patients using deep learning. Firstly, we employ 5G to send and receive data from wearable medical devices. Secondly, Flink streaming data processing framework is applied to access electrocardiogram data. Finally, we use convolutional neural networks and long short-term memory networks model to obtain automatically predict the COVID-19 patient's cardiovascular health. Theoretical analysis and experimental results show that our proposal can well solve the above issues and improve the prediction accuracy of cardiovascular disease to 99.29%.

8.
IEEE J Biomed Health Inform ; 27(5): 2231-2242, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35704539

RESUMO

As an important carrier of healthcare data, Electronic Medical Records (EMRs) generated from various sensors, i.e., wearable, implantable, are extremely valuable research materials for artificial intelligence and machine learning. The efficient circulation of EMRs can improve remote medical services and promote the development of the related healthcare industry. However, in traditional centralized data sharing architectures, the balance between privacy and traceability still cannot be well handled. To address the issue that malicious users cannot be locked in the fully anonymous sharing schemes, we propose a trackable anonymous remote healthcare data storing and sharing scheme over decentralized consortium blockchain. Through an "on-chain & off-chain" model, it relieves the massive data storage pressure of medical blockchain. By introducing an improved proxy re-encryption mechanism, the proposed scheme realizes the fine-gained access control of the outsourced data, and can also prevent the collusion between semi-trusted cloud servers and data requestors who try to reveal EMRs without authorization. Compared with the existing schemes, our solution can provide a lower computational overhead in repeated EMRs sharing, resulting in a more efficient overall performance.


Assuntos
Blockchain , Humanos , Segurança Computacional , Confidencialidade , Inteligência Artificial , Privacidade , Registros Eletrônicos de Saúde , Atenção à Saúde , Disseminação de Informação
9.
PeerJ Comput Sci ; 9: e1752, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192451

RESUMO

Article citation creates a link between the cited and citing articles and is used as a basis for several parameters like author and journal impact factor, H-index, i10 index, etc., for scientific achievements. Citations also include self-citation which refers to article citation by the author himself. Self-citation is important to evaluate an author's research profile and has gained popularity recently. Although different criteria are found in the literature regarding appropriate self-citation, self-citation does have a huge impact on a researcher's scientific profile. This study carries out two cases in this regard. In case 1, the qualitative aspect of the author's profile is analyzed using hand-crafted feature engineering techniques. The sentiments conveyed through citations are integral in assessing research quality, as they can signify appreciation, critique, or serve as a foundation for further research. Analyzing sentiments within in-text citations remains a formidable challenge, even with the utilization of automated sentiment annotations. For this purpose, this study employs machine learning models using term frequency (TF) and term frequency-inverse document frequency (TF-IDF). Random forest using TF with Synthetic Minority Oversampling Technique (SMOTE) achieved a 0.9727 score of accuracy. Case 2 deals with quantitative analysis and investigates direct and indirect self-citation. In this study, the top 2% of researchers in 2020 is considered as a baseline. For this purpose, the data of the top 25 Pakistani researchers are manually retrieved from this dataset, in addition to the citation information from the Web of Science (WoS). The self-citation is estimated using the proposed model and results are compared with those obtained from WoS. Experimental results show a substantial difference between the two, as the ratio of self-citation from the proposed approach is higher than WoS. It is observed that the citations from the WoS for authors are overstated. For a comprehensive evaluation of the researcher's profile, both direct and indirect self-citation must be included.

10.
Front Med (Lausanne) ; 10: 1330218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188327

RESUMO

Despite a worldwide decline in maternal mortality over the past two decades, a significant gap persists between low- and high-income countries, with 94% of maternal mortality concentrated in low and middle-income nations. Ultrasound serves as a prevalent diagnostic tool in prenatal care for monitoring fetal growth and development. Nevertheless, acquiring standard fetal ultrasound planes with accurate anatomical structures proves challenging and time-intensive, even for skilled sonographers. Therefore, for determining common maternal fetuses from ultrasound images, an automated computer-aided diagnostic (CAD) system is required. A new residual bottleneck mechanism-based deep learning architecture has been proposed that includes 82 layers deep. The proposed architecture has added three residual blocks, each including two highway paths and one skip connection. In addition, a convolutional layer has been added of size 3 × 3 before each residual block. In the training process, several hyper parameters have been initialized using Bayesian optimization (BO) rather than manual initialization. Deep features are extracted from the average pooling layer and performed the classification. In the classification process, an increase occurred in the computational time; therefore, we proposed an improved search-based moth flame optimization algorithm for optimal feature selection. The data is then classified using neural network classifiers based on the selected features. The experimental phase involved the analysis of ultrasound images, specifically focusing on fetal brain and common maternal fetal images. The proposed method achieved 78.5% and 79.4% accuracy for brain fetal planes and common maternal fetal planes. Comparison with several pre-trained neural nets and state-of-the-art (SOTA) optimization algorithms shows improved accuracy.

11.
Comput Electr Eng ; 103: 108391, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36119394

RESUMO

All witnessed the terrible effects of the COVID-19 pandemic on the health and work lives of the population across the world. It is hard to diagnose all infected people in real time since the conventional medical diagnosis of COVID-19 patients takes a couple of days for accurate diagnosis results. In this paper, a novel learning framework is proposed for the early diagnosis of COVID-19 patients using hybrid deep fusion learning models. The proposed framework performs early classification of patients based on collected samples of chest X-ray images and Coswara cough (sound) samples of possibly infected people. The captured cough samples are pre-processed using speech signal processing techniques and Mel frequency cepstral coefficient features are extracted using deep convolutional neural networks. Finally, the proposed system fuses extracted features to provide 98.70% and 82.7% based on Chest-X ray images and cough (audio) samples for early diagnosis using the weighted sum-rule fusion method.

12.
IEEE J Biomed Health Inform ; 26(10): 5055-5066, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34874878

RESUMO

According to statistics, in the 185 countries' 36 types of cancer, the morbidity and mortality of lung cancer take the first place, and non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer (International Agency for Research on Cancer, 2018), (Bray et al., 2018). Significantly in many developing countries, limited medical resources and excess population seriously affect the diagnosis and treatment of alung cancer patients. The 21st century is an era of life medicine, big data, and information technology. Synthetic biology is known as the driving force of natural product innovation and research in this era. Based on the research of NSCLC targeted drugs, through the cross-fusion of synthetic biology and artificial intelligence, using the idea of bioengineering, we construct an artificial intelligence assisted medical system and propose a drug selection framework for the personalized selection of NSCLC patients. Under the premise of ensuring the efficacy, considering the economic cost of targeted drugs as an auxiliary decision-making factor, the system predicts the drug effectiveness-cost then. The experiment shows that our method can rely on the provided clinical data to screen drug treatment programs suitable for the patient's conditions and assist doctors in making an efficient diagnosis.


Assuntos
Produtos Biológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Inteligência Artificial , Produtos Biológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Custos e Análise de Custo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Biologia Sintética
13.
Soft comput ; 26(16): 7519-7533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34867079

RESUMO

Predictive health monitoring systems help to detect human health threats in the early stage. Evolving deep learning techniques in medical image analysis results in efficient feedback in quick time. Fibrous dysplasia (FD) is a genetic disorder, triggered by the mutation in Guanine Nucleotide binding protein with alpha stimulatory activities in the human bone genesis. It slowly occupies the bone marrow and converts the bone cell into fibrous tissues. It weakens the bone structure and leads to permanent disability. This paper proposes the study of FD bone image analyzing techniques with deep networks. Also, the linear regression model is annotated for predicting the bone abnormality levels with observed coefficients. Modern image processing begins with various image filters. It describes the edges, shades, texture values of the receptive field. Different types of segmentation and edge detection mechanisms are applied to locate the tumor, lesion, and fibrous tissues in the bone image. Extract the fibrous region in the bone image using the region-based convolutional neural network algorithm. The segmented results are compared with their accuracy metrics. The segmentation loss is reduced by each iteration. The overall loss is 0.24% and the accuracy is 99%, segmenting the masked region produces 98% of accuracy, and building the bounding boxes is 99% of accuracy.

14.
PeerJ Comput Sci ; 7: e767, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34825056

RESUMO

Image memorability is a very hard problem in image processing due to its subjective nature. But due to the introduction of Deep Learning and the large availability of data and GPUs, great strides have been made in predicting the memorability of an image. In this paper, we propose a novel deep learning architecture called ResMem-Net that is a hybrid of LSTM and CNN that uses information from the hidden layers of the CNN to compute the memorability score of an image. The intermediate layers are important for predicting the output because they contain information about the intrinsic properties of the image. The proposed architecture automatically learns visual emotions and saliency, shown by the heatmaps generated using the GradRAM technique. We have also used the heatmaps and results to analyze and answer one of the most important questions in image memorability: "What makes an image memorable?". The model is trained and evaluated using the publicly available Large-scale Image Memorability dataset (LaMem) from MIT. The results show that the model achieves a rank correlation of 0.679 and a mean squared error of 0.011, which is better than the current state-of-the-art models and is close to human consistency (p = 0.68). The proposed architecture also has a significantly low number of parameters compared to the state-of-the-art architecture, making it memory efficient and suitable for production.

15.
Front Public Health ; 8: 357, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719767

RESUMO

Integration of artificial intelligence (AI) techniques in wireless infrastructure, real-time collection, and processing of end-user devices is now in high demand. It is now superlative to use AI to detect and predict pandemics of a colossal nature. The Coronavirus disease 2019 (COVID-19) pandemic, which originated in Wuhan China, has had disastrous effects on the global community and has overburdened advanced healthcare systems throughout the world. Globally; over 4,063,525 confirmed cases and 282,244 deaths have been recorded as of 11th May 2020, according to the European Centre for Disease Prevention and Control agency. However, the current rapid and exponential rise in the number of patients has necessitated efficient and quick prediction of the possible outcome of an infected patient for appropriate treatment using AI techniques. This paper proposes a fine-tuned Random Forest model boosted by the AdaBoost algorithm. The model uses the COVID-19 patient's geographical, travel, health, and demographic data to predict the severity of the case and the possible outcome, recovery, or death. The model has an accuracy of 94% and a F1 Score of 0.86 on the dataset used. The data analysis reveals a positive correlation between patients' gender and deaths, and also indicates that the majority of patients are aged between 20 and 70 years.


Assuntos
Inteligência Artificial , COVID-19/epidemiologia , Pandemias , Adulto , Idoso , Algoritmos , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Sensors (Basel) ; 20(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708807

RESUMO

With an increasing penetration of ubiquitous connectivity, the amount of data describing the actions of end-users has been increasing dramatically, both within the domain of the Internet of Things (IoT) and other smart devices. This has led to more awareness of users in terms of protecting personal data. Within the IoT, there is a growing number of peer-to-peer (P2P) transactions, increasing the exposure to security vulnerabilities, and the risk of cyberattacks. Blockchain technology has been explored as middleware in P2P transactions, but existing solutions have mainly focused on providing a safe environment for data trade without considering potential changes in interaction topologies. we present EdgeBoT, a proof-of-concept smart contracts based platform for the IoT built on top of the ethereum blockchain. With the Blockchain of Things (BoT) at the edge of the network, EdgeBoT enables a wider variety of interaction topologies between nodes in the network and external services while guaranteeing ownership of data and end users' privacy. in EdgeBoT, edge devices trade their data directly with third parties and without the need of intermediaries. This opens the door to new interaction modalities, in which data producers at the edge grant access to batches of their data to different third parties. Leveraging the immutability properties of blockchains, together with the distributed nature of smart contracts, data owners can audit and are aware of all transactions that have occurred with their data. we report initial results demonstrating the potential of EdgeBoT within the IoT. we show that integrating our solutions on top of existing IoT systems has a relatively small footprint in terms of computational resource usage, but a significant impact on the protection of data ownership and management of data trade.

17.
Sensors (Basel) ; 19(3)2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30736448

RESUMO

The prevalence of smart devices in our day-to-day activities increases the potential threat to our secret information. To counter these threats like unauthorized access and misuse of phones, only authorized users should be able to access the device. Authentication mechanism provide a secure way to safeguard the physical resources as well the information that is processed. Text-based passwords are the most common technique used for the authentication of devices, however, they are vulnerable to a certain type of attacks such as brute force, smudge and shoulder surfing attacks. Graphical Passwords (GPs) were introduced as an alternative for the conventional text-based authentication to overcome the potential threats. GPs use pictures and have been implemented in smart devices and workstations. Psychological studies reveal that humans can recognize images much easier and quicker than numeric and alphanumeric passwords, which become the basis for creating GPs. In this paper a novel Fractal-Based Authentication Technique (FBAT) has been proposed by implementing a Sierpinski triangle. In the FBAT scheme, the probability of password guessing is low making system resilient against abovementioned threats. Increasing fractal level makes the system stronger and provides security against attacks like shoulder surfing.

18.
Sensors (Basel) ; 11(7): 7004-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163999

RESUMO

RFID (Radio frequency identification) and wireless sensor networks are backbone technologies for pervasive environments. In integration of RFID and WSN, RFID data uses WSN protocols for multi-hop communications. Energy is a critical issue in WSNs; however, RFID data contains a lot of duplication. These duplications can be eliminated at the base station, but unnecessary transmissions of duplicate data within the network still occurs, which consumes nodes' energy and affects network lifetime. In this paper, we propose an in-network RFID data filtering scheme that efficiently eliminates the duplicate data. For this we use a clustering mechanism where cluster heads eliminate duplicate data and forward filtered data towards the base station. Simulation results prove that our approach saves considerable amounts of energy in terms of communication and computational cost, compared to existing filtering schemes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA