Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38529490

RESUMO

Severe lung injury causes basal stem cells to migrate and outcompete alveolar stem cells resulting in dysplastic repair and a loss of gas exchange function. This "stem cell collision" is part of a multistep process that is now revealed to generate an injury-induced tissue niche (iTCH) containing Keratin 5+ epithelial cells and plastic Pdgfra+ mesenchymal cells. Temporal and spatial single cell analysis reveals that iTCHs are governed by mesenchymal proliferation and Notch signaling, which suppresses Wnt and Fgf signaling in iTCHs. Conversely, loss of Notch in iTCHs rewires alveolar signaling patterns to promote euplastic regeneration and gas exchange. The signaling patterns of iTCHs can differentially phenotype fibrotic from degenerative human lung diseases, through apposing flows of FGF and WNT signaling. These data reveal the emergence of an injury and disease associated iTCH in the lung and the ability of using iTCH specific signaling patterns to discriminate human lung disease phenotypes.

2.
Cell Stem Cell ; 31(4): 439-454, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38492572

RESUMO

The respiratory system acts as both the primary site of gas exchange and an important sensor and barrier to the external environment. The increase in incidences of respiratory disease over the past decades has highlighted the importance of developing improved therapeutic approaches. This review will summarize recent research on the cellular complexity of the mammalian respiratory system with a focus on gas exchange and immunological defense functions of the lung. Different models of repair and regeneration will be discussed to help interpret human and animal data and spur the investigation of models and assays for future drug development.


Assuntos
Pulmão , Mamíferos , Animais , Humanos
3.
bioRxiv ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38496421

RESUMO

Hermansky-Pudlak syndrome (HPS) is a genetic disorder associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. Unifying mechanisms of AT2 cell dysfunction in genetic and sporadic fibrotic lung diseases remain unknown. Incorporating AT2 cell lineage tracing in HPS mice, we observed a progressive decline in AT2 cell numbers with aging and aberrant differentiation with increased AT2-derived alveolar epithelial type I cells. HPS AT2 cell proliferation was impaired ex vivo and in vivo , suggesting an intrinsic progenitor defect. Transcriptomic analysis of HPS AT2 cells revealed elevated expression of genes associated with aberrant differentiation and cellular senescence. Through lineage tracing and organoid modeling, we demonstrated that HPS AT2 cells were primed to persist in a Krt8 + reprogrammed transitional state, mediated by p53 activity. These findings suggest that pulmonary fibrosis in HPS may be driven by AT2 cell progenitor dysfunction in the setting of p53-mediated senescence, highlighting a novel potential therapeutic target in HPS and suggesting unifying mechanisms underlying HPS and other forms of pulmonary fibrosis.

5.
Sci Transl Med ; 16(732): eadg6229, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38295183

RESUMO

Disruption of pulmonary vascular homeostasis is a central feature of viral pneumonia, wherein endothelial cell (EC) death and subsequent angiogenic responses are critical determinants of the outcome of severe lung injury. A more granular understanding of the fundamental mechanisms driving reconstitution of lung endothelium is necessary to facilitate therapeutic vascular repair. Here, we demonstrated that TGF-ß signaling through TGF-ßR2 (transforming growth factor-ß receptor 2) is activated in pulmonary ECs upon influenza infection, and mice deficient in endothelial Tgfbr2 exhibited prolonged injury and diminished vascular repair. Loss of endothelial Tgfbr2 prevented autocrine Vegfa (vascular endothelial growth factor α) expression, reduced endothelial proliferation, and impaired renewal of aerocytes thought to be critical for alveolar gas exchange. Angiogenic responses through TGF-ßR2 were attributable to leucine-rich α-2-glycoprotein 1, a proangiogenic factor that counterbalances canonical angiostatic TGF-ß signaling. Further, we developed a lipid nanoparticle that targets the pulmonary endothelium, Lung-LNP (LuLNP). Delivery of Vegfa mRNA, a critical TGF-ßR2 downstream effector, by LuLNPs improved the impaired regeneration phenotype of EC Tgfbr2 deficiency during influenza injury. These studies defined a role for TGF-ßR2 in lung endothelial repair and demonstrated efficacy of an efficient and safe endothelial-targeted LNP capable of delivering therapeutic mRNA cargo for vascular repair in influenza infection.


Assuntos
Influenza Humana , Humanos , Camundongos , Animais , Receptor do Fator de Crescimento Transformador beta Tipo II , Fator A de Crescimento do Endotélio Vascular , Pulmão/metabolismo , Fator de Crescimento Transformador beta/metabolismo , RNA Mensageiro
6.
NPJ Regen Med ; 9(1): 2, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182591

RESUMO

Maintenance of the cellular boundary between airway and alveolar compartments during homeostasis and after injury is essential to prohibit pathological plasticity which can reduce respiratory function. Lung injury and disease can induce either functional alveolar epithelial regeneration or dysplastic formation of keratinized epithelium which does not efficiently contribute to gas exchange. Here we show that Sox2 preserves airway cell identity and prevents fate changes into either functional alveolar tissue or pathological keratinization following lung injury. Loss of Sox2 in airway epithelium leads to a loss of airway epithelial identity with a commensurate gain in alveolar and basal cell identity, in part due to activation of Wnt signaling in secretory cells and increased Trp63 expression in intrapulmonary basal-like progenitors. In idiopathic pulmonary fibrosis, loss of SOX2 expression correlates with increased WNT signaling activity in dysplastic keratinized epithelium. SOX2-deficient dysplastic epithelial cells are also observed in COVID-19 damaged lungs. Thus, Sox2 provides a molecular barrier that suppresses airway epithelial plasticity to prevent acquisition of alveolar or basal cell identity after injury and help guide proper epithelial fate and regeneration.

7.
J Clin Invest ; 134(4)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38127441

RESUMO

Lymphangioleiomyomatosis (LAM) is a progressive cystic lung disease caused by tuberous sclerosis complex 1/2 (TSC1/2) gene mutations in pulmonary mesenchymal cells, resulting in activation of the mechanistic target of rapamycin complex 1 (mTORC1). A subset of patients with LAM develop pulmonary vascular remodeling and pulmonary hypertension. Little, however, is known regarding how LAM cells communicate with endothelial cells (ECs) to trigger vascular remodeling. In end-stage LAM lung explants, we identified EC dysfunction characterized by increased EC proliferation and migration, defective angiogenesis, and dysmorphic endothelial tube network formation. To model LAM disease, we used an mTORC1 gain-of-function mouse model with a Tsc2 KO (Tsc2KO) specific to lung mesenchyme (Tbx4LME-Cre Tsc2fl/fl), similar to the mesenchyme-specific genetic alterations seen in human disease. As early as 8 weeks of age, ECs from mice exhibited marked transcriptomic changes despite an absence of morphological changes to the distal lung microvasculature. In contrast, 1-year-old Tbx4LME-Cre Tsc2fl/fl mice spontaneously developed pulmonary vascular remodeling with increased medial thickness. Single-cell RNA-Seq of 1-year-old mouse lung cells identified paracrine ligands originating from Tsc2KO mesenchyme, which can signal through receptors in arterial ECs. These ECs had transcriptionally altered genes including those in pathways associated with blood vessel remodeling. The proposed pathophysiologic mesenchymal ligand-EC receptor crosstalk highlights the importance of an altered mesenchymal cell/EC axis in LAM and other hyperactive mTORC1-driven diseases. Since ECs in patients with LAM and in Tbx4LME-Cre Tsc2fl/fl mice did not harbor TSC2 mutations, our study demonstrates that constitutively active mTORC1 lung mesenchymal cells orchestrated dysfunctional EC responses that contributed to pulmonary vascular remodeling.


Assuntos
Linfangioleiomiomatose , Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Camundongos , Animais , Lactente , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Remodelação Vascular/genética , Células Endoteliais/metabolismo , Pulmão/metabolismo , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/metabolismo , Mesoderma/metabolismo
8.
Am J Hum Genet ; 110(10): 1735-1749, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37734371

RESUMO

Emphysema and chronic obstructive pulmonary disease (COPD) most commonly result from the effects of environmental exposures in genetically susceptible individuals. Genome-wide association studies have implicated ADGRG6 in COPD and reduced lung function, and a limited number of studies have examined the role of ADGRG6 in cells representative of the airway. However, the ADGRG6 locus is also associated with DLCO/VA, an indicator of gas exchange efficiency and alveolar function. Here, we sought to evaluate the mechanistic contributions of ADGRG6 to homeostatic function and disease in type 2 alveolar epithelial cells. We applied an inducible CRISPR interference (CRISPRi) human induced pluripotent stem cell (iPSC) platform to explore ADGRG6 function in iPSC-derived AT2s (iAT2s). We demonstrate that ADGRG6 exerts pleiotropic effects on iAT2s including regulation of focal adhesions, cytoskeleton, tight junctions, and proliferation. Moreover, we find that ADGRG6 knockdown in cigarette smoke-exposed iAT2s alters cellular responses to injury, downregulating apical complexes in favor of proliferation. Our work functionally characterizes the COPD GWAS gene ADGRG6 in human alveolar epithelium.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença Pulmonar Obstrutiva Crônica , Receptores Acoplados a Proteínas G , Humanos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais/metabolismo , Estudo de Associação Genômica Ampla , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores Acoplados a Proteínas G/genética
9.
Stem Cell Reports ; 18(9): 1841-1853, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37595582

RESUMO

AT2 cells harbor alveolar stem cell activity in the lung and can self-renew and differentiate into AT1 cells during homeostasis and after injury. To identify epigenetic pathways that control the AT2-AT1 regenerative response in the lung, we performed an organoid screen using a library of pharmacological epigenetic inhibitors. This screen identified DOT1L as a regulator of AT2 cell growth and differentiation. In vivo inactivation of Dot1l leads to precocious activation of both AT1 and AT2 gene expression during lung development and accelerated AT1 cell differentiation after acute lung injury. Single-cell transcriptome analysis reveals the presence of a new AT2 cell state upon loss of Dot1l, characterized by increased expression of oxidative phosphorylation genes and changes in expression of critical transcription and epigenetic factors. Taken together, these data demonstrate that Dot1l controls the rate of alveolar epithelial cell fate acquisition during development and regeneration after acute injury.


Assuntos
Células-Tronco Adultas , Adulto , Humanos , Diferenciação Celular , Células-Tronco , Células Epiteliais Alveolares , Ciclo Celular , Histona-Lisina N-Metiltransferase/genética
10.
Nat Commun ; 14(1): 4566, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516747

RESUMO

Accurate cell type identification is a key and rate-limiting step in single-cell data analysis. Single-cell references with comprehensive cell types, reproducible and functionally validated cell identities, and common nomenclatures are much needed by the research community for automated cell type annotation, data integration, and data sharing. Here, we develop a computational pipeline utilizing the LungMAP CellCards as a dictionary to consolidate single-cell transcriptomic datasets of 104 human lungs and 17 mouse lung samples to construct LungMAP single-cell reference (CellRef) for both normal human and mouse lungs. CellRefs define 48 human and 40 mouse lung cell types catalogued from diverse anatomic locations and developmental time points. We demonstrate the accuracy and stability of LungMAP CellRefs and their utility for automated cell type annotation of both normal and diseased lungs using multiple independent methods and testing data. We develop user-friendly web interfaces for easy access and maximal utilization of the LungMAP CellRefs.


Assuntos
Perfilação da Expressão Gênica , Disseminação de Informação , Animais , Camundongos , Humanos , Análise de Célula Única , Transcriptoma
11.
Cell ; 186(7): 1478-1492.e15, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870331

RESUMO

Lungs undergo mechanical strain during breathing, but how these biophysical forces affect cell fate and tissue homeostasis are unclear. We show that biophysical forces through normal respiratory motion actively maintain alveolar type 1 (AT1) cell identity and restrict these cells from reprogramming into AT2 cells in the adult lung. AT1 cell fate is maintained at homeostasis by Cdc42- and Ptk2-mediated actin remodeling and cytoskeletal strain, and inactivation of these pathways causes a rapid reprogramming into the AT2 cell fate. This plasticity induces chromatin reorganization and changes in nuclear lamina-chromatin interactions, which can discriminate AT1 and AT2 cell identity. Unloading the biophysical forces of breathing movements leads to AT1-AT2 cell reprogramming, revealing that normal respiration is essential to maintain alveolar epithelial cell fate. These data demonstrate the integral function of mechanotransduction in maintaining lung cell fate and identifies the AT1 cell as an important mechanosensor in the alveolar niche.


Assuntos
Células Epiteliais Alveolares , Mecanotransdução Celular , Células Epiteliais Alveolares/metabolismo , Células Cultivadas , Pulmão , Diferenciação Celular/fisiologia , Respiração
12.
Proc Natl Acad Sci U S A ; 119(43): e2123187119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252035

RESUMO

Disruption of alveolar type 2 cell (AEC2) protein quality control has been implicated in chronic lung diseases, including pulmonary fibrosis (PF). We previously reported the in vivo modeling of a clinical surfactant protein C (SP-C) mutation that led to AEC2 endoplasmic reticulum (ER) stress and spontaneous lung fibrosis, providing proof of concept for disruption to proteostasis as a proximal driver of PF. Using two clinical SP-C mutation models, we have now discovered that AEC2s experiencing significant ER stress lose quintessential AEC2 features and develop a reprogrammed cell state that heretofore has been seen only as a response to lung injury. Using single-cell RNA sequencing in vivo and organoid-based modeling, we show that this state arises de novo from intrinsic AEC2 dysfunction. The cell-autonomous AEC2 reprogramming can be attenuated through inhibition of inositol-requiring enzyme 1 (IRE1α) signaling as the use of an IRE1α inhibitor reduced the development of the reprogrammed cell state and also diminished AEC2-driven recruitment of granulocytes, alveolitis, and lung injury. These findings identify AEC2 proteostasis, and specifically IRE1α signaling through its major product XBP-1, as a driver of a key AEC2 phenotypic change that has been identified in lung fibrosis.


Assuntos
Células Epiteliais Alveolares , Reprogramação Celular , Lesão Pulmonar , Proteínas de Membrana , Proteínas Serina-Treonina Quinases , Fibrose Pulmonar , Células Epiteliais Alveolares/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Inositol/metabolismo , Lesão Pulmonar/patologia , Proteínas Serina-Treonina Quinases/genética , Proteostase , Fibrose Pulmonar/genética , Proteínas de Membrana/genética , Proteína C Associada a Surfactante Pulmonar/metabolismo
13.
Adv Mater ; 34(28): e2202992, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35522531

RESUMO

Epithelial cell organoids have increased opportunities to probe questions on tissue development and disease in vitro and for therapeutic cell transplantation. Despite their potential, current protocols to grow these organoids almost exclusively depend on culture within 3D Matrigel, which limits defined culture conditions, introduces animal components, and results in heterogenous organoids (i.e., shape, size, composition). Here, a method is described that relies on hyaluronic acid hydrogels for the generation and expansion of lung alveolar organoids (alveolospheres). Using synthetic hydrogels with defined chemical and physical properties, human-induced pluripotent stem cell (iPSC)-derived alveolar type 2 cells (iAT2s) self-assemble into alveolospheres and propagate in Matrigel-free conditions. By engineering predefined microcavities within these hydrogels, the heterogeneity of alveolosphere size and structure is reduced when compared to 3D culture, while maintaining the alveolar type 2 cell fate of human iAT2-derived progenitor cells. This hydrogel system is a facile and accessible system for the culture of iPSC-derived lung progenitors and the method can be expanded to the culture of primary mouse tissue derived AT2 and other epithelial progenitor and stem cell aggregates.


Assuntos
Hidrogéis , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Ácido Hialurônico/metabolismo , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão , Camundongos , Organoides/metabolismo
14.
ACS Nano ; 16(3): 4666-4683, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35266686

RESUMO

A long-standing goal of nanomedicine is to improve a drug's benefit by loading it into a nanocarrier that homes solely to a specific target cell and organ. Unfortunately, nanocarriers usually end up with only a small percentage of the injected dose (% ID) in the target organ, due largely to clearance by the liver and spleen. Further, cell-type-specific targeting is rarely achieved without reducing target organ accumulation. To solve these problems, we introduce DART (dual affinity to RBCs and target cells), in which nanocarriers are conjugated to two affinity ligands, one binding red blood cells and one binding a target cell (here, pulmonary endothelial cells). DART nanocarriers first bind red blood cells and then transfer to the target organ's endothelial cells as the bound red blood cells squeeze through capillaries. We show that within minutes after intravascular injection in mice nearly 70% ID of DART nanocarriers accumulate in the target organ (lungs), more than doubling the % ID ceiling achieved by a multitude of prior technologies, finally achieving a majority % ID in a target organ. Humanized DART nanocarriers in ex vivo perfused human lungs recapitulate this phenomenon. Furthermore, DART enhances the selectivity of delivery to target endothelial cells over local phagocytes within the target organ by 6-fold. DART's marked improvement in both organ- and cell-type targeting may thus be helpful in localizing drugs for a multitude of medical applications.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Portadores de Fármacos/metabolismo , Células Endoteliais/metabolismo , Eritrócitos , Pulmão/metabolismo , Camundongos , Preparações Farmacêuticas
15.
Nature ; 604(7904): 120-126, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355013

RESUMO

The human lung differs substantially from its mouse counterpart, resulting in a distinct distal airway architecture affected by disease pathology in chronic obstructive pulmonary disease. In humans, the distal branches of the airway interweave with the alveolar gas-exchange niche, forming an anatomical structure known as the respiratory bronchioles. Owing to the lack of a counterpart in mouse, the cellular and molecular mechanisms that govern respiratory bronchioles in the human lung remain uncharacterized. Here we show that human respiratory bronchioles contain a unique secretory cell population that is distinct from cells in larger proximal airways. Organoid modelling reveals that these respiratory airway secretory (RAS) cells act as unidirectional progenitors for alveolar type 2 cells, which are essential for maintaining and regenerating the alveolar niche. RAS cell lineage differentiation into alveolar type 2 cells is regulated by Notch and Wnt signalling. In chronic obstructive pulmonary disease, RAS cells are altered transcriptionally, corresponding to abnormal alveolar type 2 cell states, which are associated with smoking exposure in both humans and ferrets. These data identify a distinct progenitor in a region of the human lung that is not found in mouse that has a critical role in maintaining the gas-exchange compartment and is altered in chronic lung disease.


Assuntos
Bronquíolos , Furões , Células-Tronco Multipotentes , Alvéolos Pulmonares , Animais , Bronquíolos/citologia , Linhagem da Célula , Humanos , Pulmão/patologia , Camundongos , Células-Tronco Multipotentes/citologia , Alvéolos Pulmonares/citologia , Doença Pulmonar Obstrutiva Crônica
16.
Dev Cell ; 57(1): 112-145.e2, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34936882

RESUMO

The human lung plays vital roles in respiration, host defense, and basic physiology. Recent technological advancements such as single-cell RNA sequencing and genetic lineage tracing have revealed novel cell types and enriched functional properties of existing cell types in lung. The time has come to take a new census. Initiated by members of the NHLBI-funded LungMAP Consortium and aided by experts in the lung biology community, we synthesized current data into a comprehensive and practical cellular census of the lung. Identities of cell types in the normal lung are captured in individual cell cards with delineation of function, markers, developmental lineages, heterogeneity, regenerative potential, disease links, and key experimental tools. This publication will serve as the starting point of a live, up-to-date guide for lung research at https://www.lungmap.net/cell-cards/. We hope that Lung CellCards will promote the community-wide effort to establish, maintain, and restore respiratory health.


Assuntos
Pulmão/citologia , Pulmão/fisiologia , Diferenciação Celular/genética , Bases de Dados como Assunto , Humanos , Pulmão/metabolismo , Regeneração/genética , Análise de Célula Única/métodos
17.
Nat Commun ; 12(1): 3993, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183650

RESUMO

Type II alveolar cells (AT2s) are critical for basic respiratory homeostasis and tissue repair after lung injury. Prior studies indicate that AT2s also express major histocompatibility complex class II (MHCII) molecules, but how MHCII expression by AT2s is regulated and how it contributes to host defense remain unclear. Here we show that AT2s express high levels of MHCII independent of conventional inflammatory stimuli, and that selective loss of MHCII from AT2s in mice results in modest worsening of respiratory virus disease following influenza and Sendai virus infections. We also find that AT2s exhibit MHCII presentation capacity that is substantially limited compared to professional antigen presenting cells. The combination of constitutive MHCII expression and restrained antigen presentation may position AT2s to contribute to lung adaptive immune responses in a measured fashion, without over-amplifying damaging inflammation.


Assuntos
Células Epiteliais Alveolares/imunologia , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Respirovirus/imunologia , Animais , Linhagem Celular , Cães , Antígenos de Histocompatibilidade Classe II/imunologia , Inflamação/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Pulmão/citologia , Pulmão/imunologia , Macaca mulatta , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/patologia , Infecções por Respirovirus/patologia , Vírus Sendai/imunologia
18.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33789998

RESUMO

The COVID-19 pandemic poses a serious global health threat. The rapid global spread of SARS-CoV-2 highlights an urgent need to develop effective therapeutics for blocking SARS-CoV-2 infection and spread. Stimulator of Interferon Genes (STING) is a chief element in host antiviral defense pathways. In this study, we examined the impact of the STING signaling pathway on coronavirus infection using the human coronavirus OC43 (HCoV-OC43) model. We found that HCoV-OC43 infection did not stimulate the STING signaling pathway, but the activation of STING signaling effectively inhibits HCoV-OC43 infection to a much greater extent than that of type I interferons (IFNs). We also discovered that IRF3, the key STING downstream innate immune effector, is essential for this anticoronavirus activity. In addition, we found that the amidobenzimidazole (ABZI)-based human STING agonist diABZI robustly blocks the infection of not only HCoV-OC43 but also SARS-CoV-2. Therefore, our study identifies the STING signaling pathway as a potential therapeutic target that could be exploited for developing broad-spectrum antiviral therapeutics against multiple coronavirus strains in order to face the challenge of future coronavirus outbreaks.IMPORTANCE The highly infectious and lethal SARS-CoV-2 is posing an unprecedented threat to public health. Other coronaviruses are likely to jump from a nonhuman animal to humans in the future. Novel broad-spectrum antiviral therapeutics are therefore needed to control known pathogenic coronaviruses such as SARS-CoV-2 and its newly mutated variants, as well as future coronavirus outbreaks. STING signaling is a well-established host defense pathway, but its role in coronavirus infection remains unclear. In the present study, we found that activation of the STING signaling pathway robustly inhibits infection of HCoV-OC43 and SARS-CoV-2. These results identified the STING pathway as a novel target for controlling the spread of known pathogenic coronaviruses, as well as emerging coronavirus outbreaks.


Assuntos
COVID-19/metabolismo , Coronavirus Humano OC43/metabolismo , Proteínas de Membrana/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais , Células A549 , Animais , COVID-19/genética , Chlorocebus aethiops , Coronavirus Humano OC43/genética , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , SARS-CoV-2/genética , Células Vero
19.
Science ; 371(6534)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33707239

RESUMO

The lung alveolus is the functional unit of the respiratory system required for gas exchange. During the transition to air breathing at birth, biophysical forces are thought to shape the emerging tissue niche. However, the intercellular signaling that drives these processes remains poorly understood. Applying a multimodal approach, we identified alveolar type 1 (AT1) epithelial cells as a distinct signaling hub. Lineage tracing demonstrates that AT1 progenitors align with receptive, force-exerting myofibroblasts in a spatial and temporal manner. Through single-cell chromatin accessibility and pathway expression (SCAPE) analysis, we demonstrate that AT1-restricted ligands are required for myofibroblasts and alveolar formation. These studies show that the alignment of cell fates, mediated by biophysical and AT1-derived paracrine signals, drives the extensive tissue remodeling required for postnatal respiration.


Assuntos
Linhagem da Célula/genética , Epigênese Genética , Alvéolos Pulmonares/embriologia , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Animais , Células Cultivadas , Sinais (Psicologia) , Epigenômica , Humanos , Camundongos , Camundongos Transgênicos , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , RNA-Seq/métodos , Transdução de Sinais , Análise de Célula Única , Transcriptoma
20.
Adv Med Educ Pract ; 12: 49-52, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33488136

RESUMO

BACKGROUND: Gender bias in clinical training has been well established; however, little is known about how perceptions differ between men and women. Furthermore, few curricular options have been developed to discuss gender bias. OBJECTIVE: To measure the prevalence of gender bias, examine qualitative differences between men and women, and create a gender bias curriculum for internal medicine residents. METHODS: We surveyed 114 residents (response rate of 53.5%) to identify the prevalence and types of gender bias experienced in training. We compared estimates between genders and organized qualitative results into shared themes. We then developed a curriculum to promote and normalize discussions of gender bias. RESULTS: Among surveyed residents, 61% reported personal experiences of gender bias during training, with 98% of women and 19% of men reporting experiences when stratified by gender. We identified two domains in which gender bias manifested: role misidentification and a difficult working environment. Residents identified action items that led to the development of a gender bias curriculum. The curriculum includes didactic conferences and training sessions, a microaggression response toolkit, dinners for men and women residents, participation in a WhatsApp support group, and participation in academic projects related to gender bias in training. CONCLUSION: We confirmed a wide prevalence of gender bias and developed a scalable curriculum for gender bias training. Future work should explore the long-term impacts of these interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA