RESUMO
The advancement of microgravity simulators is helping many researchers better understanding the impact of the mechanically unloaded space environment on cellular function and disfunction. However, performing microgravity experiments on Earth, using simulators such as the Random Positioning Machine, introduces some unique practical challenges, including air bubble formation and leakage of growth medium from tissue culture flask and plates, all of which limit research progress. Here, we developed an easy-to-use hybrid biological platform designed with the precision of 3D printing technologies combined with PDMS microfluidic fabrication processes to facilitate reliable and reproducible microgravity cellular experiments. The system has been characterized for applications in the contest of brain cancer research by exposing glioblastoma and endothelial cells to 24 h of simulated microgravity condition to investigate the triggered mechanosensing pathways involved in cellular adaptation to the new environment. The platform demonstrated compatibility with different biological assays, i.e., proliferation, viability, morphology, protein expression and imaging of molecular structures, showing advantages over the conventional usage of culture flask. Our results indicated that both cell types are susceptible when the gravitational vector is disrupted, confirming the impact that microgravity has on both cancer and healthy cells functionality. In particular, we observed deactivation of Yap-1 molecule in glioblastoma cells and the remodeling of VE-Cadherin junctional protein in endothelial cells. The study provides support for the application of the proposed biological platform for advancing space mechanobiology research, also highlighting perspectives and strategies for developing next generation of brain cancer molecular therapies, including targeted drug delivery strategies.
RESUMO
In recent years, there has been an increasing interest in space exploration, supported by the accelerated technological advancements in the field. This has led to a new potential environment that humans could be exposed to in the very near future, and therefore an increasing request to evaluate the impact this may have on our body, including health risks associated with this endeavor. A critical component in regulating the human pathophysiology is represented by the cardiovascular system, which may be heavily affected in these extreme environments of microgravity and radiation. This mini review aims to identify the impact of microgravity and radiation on the cardiovascular system. Being able to understand the effect that comes with deep space explorations, including that of microgravity and space radiation, may also allow us to get a deeper understanding of the heart and ultimately our own basic physiological processes. This information may unlock new factors to consider with space exploration whilst simultaneously increasing our knowledge of the cardiovascular system and potentially associated diseases.
RESUMO
Brillouin imaging (BI) has become a valuable tool for micromechanical material characterisation, thanks to extensive progress in instrumentation in the last few decades. This powerful technique is contactless and label-free, thus making it especially suitable for biomedical applications. Nonetheless, to fully harness the non-contact and non-destructive nature of BI, transformational changes in instrumentation are still needed to extend the technology's utility into the domain of in vivo and in situ operation, which we foresee to be particularly crucial for wide spread usage of BI, e.g. in medical diagnostics and pathology screening. This work addresses this challenge by presenting the first demonstration of a fibre-optic Brillouin probe, capable of mapping the micromechanical properties of a tissue-mimicking phantom. This is achieved through combination of miniaturised optical design, advanced hollow-core fibre fabrication and high-resolution 3D printing. Our prototype probe is compact, background-free and possesses the highest collection efficiency to date, thus providing the foundation of a fibre-based Brillouin device for remote, in situ measurements in challenging and otherwise difficult-to-reach environments in biomedical, material science and industrial applications.