Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Med ; 27(8): 1401-1409, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34155414

RESUMO

Candida auris is a fungal pathogen of high concern due to its ability to cause healthcare-associated infections and outbreaks, its resistance to antimicrobials and disinfectants and its persistence on human skin and in the inanimate environment. To inform surveillance and future mitigation strategies, we defined the extent of skin colonization and explored the microbiome associated with C. auris colonization. We collected swab specimens and clinical data at three times points between January and April 2019 from 57 residents (up to ten body sites each) of a ventilator-capable skilled nursing facility with endemic C. auris and routine chlorhexidine gluconate (CHG) bathing. Integrating microbial-genomic and epidemiologic data revealed occult C. auris colonization of multiple body sites not targeted commonly for screening. High concentrations of CHG were associated with suppression of C. auris growth but not with deleterious perturbation of commensal microbes. Modeling human mycobiome dynamics provided insight into underlying alterations to the skin fungal community as a possible modifiable risk factor for acquisition and persistence of C. auris. Failure to detect the extensive, disparate niches of C. auris colonization may reduce the effectiveness of infection-prevention measures that target colonized residents, highlighting the importance of universal strategies to reduce C. auris transmission.


Assuntos
Candida/genética , Candidíase/epidemiologia , Dermatomicoses/epidemiologia , Pele/microbiologia , Dermatomicoses/microbiologia , Genômica , Humanos , Casas de Saúde
2.
Nutrients ; 13(4)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920187

RESUMO

Various proteins or protein fractions reportedly positively affect gastrointestinal integrity and inflammation in diets providing >45% energy as fat. This study tested whether benefits were seen in diets providing 30% of energy as fat. Purified diets (PD) with isolated soy protein (ISP), dried whole milk powder (DWMP), milk fat globule membrane (MFGM), or milk protein concentrate (MPC) as protein sources were fed to C57BL/6J mice (n = 15/diet group) for 13 weeks. MFGM-fed mice were heaviest (p < 0.005) but remained within breeder norms. Growth rates and gut motility were similar for all PD-fed mice. FITC-dextran assessed gut permeability was lowest in DWMP and MFGM (p = 0.054); overall, plasma endotoxin and unprovoked circulating cytokines indicated a non-inflammatory state for all PD-fed mice. Despite differences in cecal butyrate and intestinal gene expression, all PDs supported gastrointestinal health. Whole milk provided more positive effects compared to its fractions. However, ISP-fed mice showed a >370%, (p < 0.006) increase in colonic myeloperoxidase activity indicative of tissue neutrophil infiltration. Surprisingly, FITC-dextran and endotoxin outcomes were many folds better in PD-fed mice than mice (strain, vendor, age and sex matched) fed a "chow-type" nutritionally adequate non-PD. Additional variables within a diet's matrix appear to affect routine indicators or gastrointestinal health.


Assuntos
Comportamento Alimentar/fisiologia , Trato Gastrointestinal/fisiologia , Glicolipídeos/administração & dosagem , Glicoproteínas/administração & dosagem , Proteínas do Leite/administração & dosagem , Proteínas de Soja/administração & dosagem , Ração Animal , Animais , Biomarcadores , Motilidade Gastrointestinal , Gotículas Lipídicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
3.
Front Microbiol ; 7: 847, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375572

RESUMO

Acinetobacter baumannii is a major nosocomial pathogen causing human infections with significant mortality rates. In most cases, infections are acquired through exposure to A. baumannii biofilms that persist on contaminated hospital equipment and surfaces. Thus, it is imperative to develop effective measures for controlling A. baumannii biofilms in nosocomial settings. This study investigated the efficacy of octenidine dihydrochloride (OH), a new generation disinfectant for reducing A. baumannii biofilms on polystyrene, stainless steel and catheters. OH at 0.3% (5 mM), 0.6% (10 mM), and 0.9% (15 mM) was effective in significantly inactivating A. baumannii biofilms on all tested surfaces (P < 0.05). Furthermore, OH was equally effective in inactivating biofilms of multidrug resistant and drug susceptible A. baumannii isolates. In addition, confocal imaging revealed the predominance of dead cells in the OH-treated samples in comparison to the control. Further, scanning electron microscopy of biofilms formed on catheters revealed that OH treatment significantly reduced A. baumannii biofilm populations in corroboration with our antibiofilm assay. These data underscore the efficacy of OH in inactivating A. baumannii biofilms, thereby suggesting its potential use as a disinfectant or a catheter lock solution to control A. baumannii infections.

4.
Future Microbiol ; 11: 745-56, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27191971

RESUMO

AIM: This study investigated the efficacy of selenium (Se) in reducing Escherichia coli O157:H7 verotoxin production and toxin gene expression. Additionally, the effect of Se on globotriaosylceramide (Gb3) receptor in human lymphoma cells was determined. MATERIALS & METHODS: The effect of Se on verotoxin synthesis was determined by standard ELISA, whereas its effect on Gb3 receptor was determined by flow cytometry and real-time quantitative PCR. RESULTS & CONCLUSIONS: Se reduced extracellular and intracellular verotoxin concentration by 40-60% and 80-90%, respectively (p < 0.05), and downregulated verotoxin genes (p < 0.05). Se reduced Gb3 receptor synthesis in lymphoma cells, and real-time quantitative PCR data revealed a significant downregulation of LacCer synthase gene (GalT2) involved in Gb3 synthesis. Further studies are warranted to validate these results in an appropriate animal model.


Assuntos
Infecções por Escherichia coli/metabolismo , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/metabolismo , Receptores de Superfície Celular/metabolismo , Selênio/farmacologia , Toxinas Shiga/metabolismo , Triexosilceramidas/metabolismo , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Humanos , Receptores de Superfície Celular/genética
5.
J Food Prot ; 79(11): 1965-1970, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-28221905

RESUMO

Escherichia coli O157:H7 is a major foodborne pathogen that can cause serious human illness characterized by hemorrhagic diarrhea and kidney failure. The pathology of enterohemorrhagic E. coli O157:H7 (EHEC) infection is primarily mediated by verotoxins, which bind to the globotriaosylceramide receptor on host cells. Antibiotics are contraindicated for treating EHEC infection because they lead to increased verotoxin release, thereby increasing the risk of renal failure and death in patients. Thus, alternative strategies are needed for controlling EHEC infections in humans. This study investigated the effect of subinhibitory concentrations of five plant-derived antimicrobial agents (PDAs) that are generally considered as safe, i.e., trans-cinnamaldehyde, eugenol, carvacrol, thymol, and ß-resorcylic acid, on EHEC motility, adhesion to human intestinal epithelial cells, verotoxin production, and virulence gene expression. All tested PDAs reduced EHEC motility and attachment to human intestinal epithelial cells (P < 0.05) and decreased verotoxin synthesis by EHEC. The reverse transcription real-time PCR data revealed that PDAs decreased the expression of critical virulence genes in EHEC (P < 0.05). The results collectively suggest that these PDAs could be used to reduce EHEC virulence, but follow-up studies in animal models are necessary to validate these findings.


Assuntos
Anti-Infecciosos/farmacologia , Escherichia coli Êntero-Hemorrágica , Animais , Infecções por Escherichia coli , Escherichia coli O157/efeitos dos fármacos , Proteínas de Escherichia coli , Humanos , Hidroxibenzoatos/farmacologia , Virulência/genética
6.
Int J Mol Sci ; 16(3): 5014-27, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25749477

RESUMO

Colorectal cancer, breast cancer and skin cancer are commonly-reported cancer types in the U.S. Although radiation and chemotherapy are routinely used to treat cancer, they produce side effects in patients. Additionally, resistance to chemotherapeutic drugs has been noticed in cancers. Thus, there is a need for effective and safe bioprophylactics and biotherapeutics in cancer therapy. The medicinal value of goat milk has been recognized for centuries and is primarily attributed to three fatty acids, namely capric, caprylic and caproic acids. This research investigates the anticancer property of these fatty acids on human colorectal, skin and mammary gland cancer cells. The cancer cells were treated with various concentrations of fatty acids for 48 h, and cell viability was monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Additionally, real-time quantitative PCR (RT-qPCR) was performed to elucidate the potential anti-cancer mechanisms of the three fatty acids under investigation. Capric, caprylic and caproic acids reduced cancer cell viability by 70% to 90% (p < 0.05) compared to controls. RT-qPCR data indicated that these natural molecules produced anticancer effects by down-regulating cell cycle regulatory genes and up-regulating genes involved in apoptosis. Future research will validate the anticancer effect of these fatty acids in an appropriate in vivo model.


Assuntos
Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caproatos/química , Caproatos/farmacologia , Caproatos/uso terapêutico , Caprilatos/química , Caprilatos/farmacologia , Caprilatos/uso terapêutico , Caspase 8/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ácidos Decanoicos/química , Ácidos Decanoicos/farmacologia , Ácidos Decanoicos/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Feminino , Cabras , Células HCT116 , Humanos , Leite/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Regulação para Cima/efeitos dos fármacos
7.
Appl Environ Microbiol ; 81(9): 2985-94, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25710365

RESUMO

Salmonella enterica serovar Enteritidis is a major foodborne pathogen in the United States, causing gastroenteritis in humans, primarily through consumption of contaminated eggs. Chickens are the reservoir host of S. Enteritidis. In layer hens, S. Enteritidis colonizes the intestine and migrates to various organs, including the oviduct, leading to egg contamination. This study investigated the efficacy of in-feed supplementation with trans-cinnamaldehyde (TC), a generally recognized as safe (GRAS) plant compound obtained from cinnamon, in reducing S. Enteritidis cecal colonization and systemic spread in layers. Additionally, the effect of TC on S. Enteritidis virulence factors critical for macrophage survival and oviduct colonization was investigated in vitro. The consumer acceptability of eggs was also determined by a triangle test. Supplementation of TC in feed for 66 days at 1 or 1.5% (vol/wt) for 40- or 25-week-old layer chickens decreased the amounts of S. Enteritidis on eggshell and in yolk (P<0.001). Additionally, S. Enteritidis persistence in the cecum, liver, and oviduct in TC-supplemented birds was decreased compared to that in controls (P<0.001). No significant differences in feed intake, body weight, or egg production in birds or in consumer acceptability of eggs were observed (P>0.05). In vitro cell culture assays revealed that TC reduced S. Enteritidis adhesion to and invasion of primary chicken oviduct epithelial cells and reduced S. Enteritidis survival in chicken macrophages (P<0.001). Follow-up gene expression analysis using real-time quantitative PCR (qPCR) showed that TC downregulated the expression of S. Enteritidis virulence genes critical for chicken oviduct colonization (P<0.001). The results suggest that TC may potentially be used as a feed additive to reduce egg-borne transmission of S. Enteritidis.


Assuntos
Acroleína/análogos & derivados , Antibacterianos/administração & dosagem , Ovos/microbiologia , Salmonella enteritidis/isolamento & purificação , Acroleína/administração & dosagem , Animais , Aderência Bacteriana/efeitos dos fármacos , Ceco/microbiologia , Galinhas , Células Epiteliais/microbiologia , Feminino , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Fígado/microbiologia , Macrófagos/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Oviductos/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/prevenção & controle , Salmonella enteritidis/fisiologia , Estados Unidos , Fatores de Virulência/genética
8.
Biomed Res Int ; 2014: 212395, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25050328

RESUMO

This study investigated the effect of subinhibitory concentrations (SIC) of five plant-derived antimicrobials (PDAs), namely, trans cinnamaldehyde, eugenol, carvacrol, thymol, and ß-resorcylic acid, on E. coli O157:H7 (EHEC) attachment and invasion of cultured bovine colonic (CO) and rectoanal junction (RAJ) epithelial cells. In addition, PDAs' effect on EHEC genes critical for colonization of cattle gastrointestinal tract (CGIT) was determined in bovine rumen fluid (RF) and intestinal contents (BICs). Primary bovine CO and RAJ epithelial cells were established and were separately inoculated with three EHEC strains with or without (control) SIC of each PDA. Following incubation, EHEC that attached and invaded the cells were determined. Furthermore, the expression of EHEC genes critical for colonization in cattle was investigated using real-time, quantitative polymerase chain reaction in RF and BICs. All the PDAs decreased EHEC invasion of CO and RAJ epithelial cells (P < 0.05). The PDAs also downregulated (P < 0.05) the expression of EHEC genes critical for colonization in CGIT. Results suggest that the PDAs could potentially be used to control EHEC colonization in cattle; however follow-up in vivo studies in cattle are warranted.


Assuntos
Anti-Infecciosos/farmacologia , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/patogenicidade , Trato Gastrointestinal/microbiologia , Plantas/química , Fatores de Virulência/metabolismo , Animais , Aderência Bacteriana/efeitos dos fármacos , Bovinos , Contagem de Colônia Microbiana , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Escherichia coli O157/efeitos dos fármacos , Etanolamina/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Muco/metabolismo , Rúmen/microbiologia
9.
Poult Sci ; 92(12): 3228-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24235233

RESUMO

Salmonella Enteritidis is a common foodborne pathogen transmitted to humans largely by consumption of contaminated eggs. The external surface of eggs becomes contaminated with Salmonella Enteritidis from various sources on farms, the main sources being hens' droppings and contaminated litter. Therefore, effective egg surface disinfection is critical to reduce pathogens on eggs and potentially control egg-borne disease outbreaks. This study investigated the efficacy of GRAS (generally recognized as safe) status, plant-derived antimicrobials (PDA), namely trans-cinnamaldehyde (TC), carvacrol (CR), and eugenol (EUG), as an antimicrobial wash for rapidly killing Salmonella Enteritidis on shell eggs in the presence or absence of chicken droppings. White-shelled eggs inoculated with a 5-strain mixture of nalidixic acid (NA) resistant Salmonella Enteritidis (8.0 log cfu/mL) were washed in sterile deionized water containing each PDA (0.0, 0.25, 0.5, or 0.75%) or chlorine (200 mg/kg) at 32 or 42°C for 30 s, 3 min, or 5 min. Approximately 6.0 log cfu/mL of Salmonella Enteritidis was recovered from inoculated and unwashed eggs. The wash water control and chlorine control decreased Salmonella Enteritidis on eggs by only 2.0 log cfu/mL even after washing for 5 min. The PDA were highly effective in killing Salmonella Enteritidis on eggs compared with controls (P < 0.05). All treatments containing CR and EUG reduced Salmonella Enteritidis to undetectable levels as rapidly as within 30 s of washing, whereas TC (0.75%) completely inactivated Salmonella Enteritidis on eggs washed at 42°C for 30 s (P < 0.05). No Salmonella Enteritidis was detected in any PDA or chlorine wash solution; however, substantial pathogen populations (~4.0 log cfu/mL) survived in the antibacterial-free control wash water (P < 0.05). The CR and EUG were also able to eliminate Salmonella Enteritidis on eggs to undetectable levels in the presence of 3% chicken droppings at 32°C (P < 0.05). This study demonstrates that PDA could effectively be used as a wash treatment to reduce Salmonella Enteritidis on shell eggs. Sensory and quality studies of PDA-washed eggs need to be conducted before recommending their use.


Assuntos
Anti-Infecciosos/uso terapêutico , Galinhas , Ovos/microbiologia , Microbiologia de Alimentos/métodos , Fitoterapia/veterinária , Doenças das Aves Domésticas/tratamento farmacológico , Salmonelose Animal/tratamento farmacológico , Salmonella enteritidis/efeitos dos fármacos , Acroleína/análogos & derivados , Acroleína/uso terapêutico , Animais , Cinnamomum/química , Contagem de Colônia Microbiana/veterinária , Cimenos , Desinfecção/métodos , Eugenol/uso terapêutico , Monoterpenos/uso terapêutico , Origanum/química , Casca de Planta/química , Extratos Vegetais/uso terapêutico , Óleos de Plantas/uso terapêutico , Doenças das Aves Domésticas/epidemiologia , Salmonelose Animal/epidemiologia , Salmonella enteritidis/isolamento & purificação , Syzygium/química
10.
J Food Sci ; 78(9): M1399-404, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24024692

RESUMO

This study investigated the efficacy of 3 GRAS-status, plant-derived antimicrobials (PDAs), trans-cinnamaldehyde (TC), carvacrol (CR), and ß-resorcylic acid (BR) applied as an antimicrobial wash for killing Escherichia coli O157:H7 on apples. "Red delicious" apples inoculated with a 5 strain mixture of E. coli O157:H7 were subjected to washing in sterile deionized water containing 0% PDA (control), 0.15% TC, 0.35% TC, 0.15% CR, 0.30% CR, 0.5% BR, or 1% BR for 1, 3, and 5 min at 23 °C in the presence and absence of 1% soil, and surviving pathogen populations on apples were enumerated at each specified time. All PDAs were more effective in reducing E. coli O157:H7 compared to the water wash treatment (P < 0.05) and reduced the pathogen by 4- to 5-log CFU/apple in 5 min. Chlorine (1%) was the most effective treatment reducing the pathogen on apples to undetectable levels in 1 min (P < 0.05). Moreover, the antimicrobial effect of CR and BR was not affected by the presence of soil, whereas the efficacy of TC and BR was decreased in the presence of soil. Further, no bacteria were detected in the wash solution containing CR and BR; however, E. coli O157:H7 was recovered in the control wash water and treatment solutions containing TC and chlorine, in the presence of 1% soil (P < 0.05). Results suggest that the aforementioned PDAs, especially CR and BR could be used effectively to kill E. coli O157:H7 on apples when used as a wash treatment. Studies on the sensory and quality characteristics of apples treated with PDAs are needed before recommending their usage.


Assuntos
Anti-Infecciosos/farmacologia , Desinfetantes/farmacologia , Escherichia coli O157/efeitos dos fármacos , Contaminação de Alimentos/prevenção & controle , Malus/microbiologia , Extratos Vegetais/farmacologia , Acroleína/análogos & derivados , Acroleína/farmacologia , Cloro/farmacologia , Contagem de Colônia Microbiana , Cimenos , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Hidroxibenzoatos/farmacologia , Monoterpenos/farmacologia , Água/química
11.
Int J Food Microbiol ; 163(2-3): 114-8, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23558194

RESUMO

Listeria monocytogenes is a significant foodborne pathogen associated with outbreaks involving contaminated ready-to-eat (RTE) products, including frankfurters. The USDA-FSIS has established a zero tolerance policy for L. monocytogenes in RTE products, thereby warranting effective post-processing interventions to control the pathogen on these foods. In the present study, the antilisterial activity of GRAS (generally recognized as safe)-status plant-derived antimicrobials (PDAs), namely ß-resorcylic acid (BR), carvacrol (CR), and trans-cinnamaldehyde (TC) either alone or in combination with hydrogen peroxide (HP) as post-processing dip treatments on frankfurters was investigated. Frankfurters were surface inoculated with a five-strain mixture of L. monocytogenes (~6.0 log CFU per frankfurter), followed by dip treatment at 55 °C for 60s or 65 °C for 30s in sterile deionized water, or water containing BR (1.5%), CR (0.75%), or TC (0.75%) either alone or in combination with HP (0.1%). Treated frankfurters were vacuum-packaged, and stored at 4 °C for 70 days. Representative samples were analyzed on days 0, 1, 3, 7, 14, 28, 42, 56, and 70 of refrigerated storage for enumerating surviving L. monocytogenes on frankfurters. Six frankfurters were sampled at each time point for each treatment. On day zero, all PDAs reduced L. monocytogenes counts by >2 log CFU/frankfurter at both temperatures (P<0.05), compared to controls. From days 1 to 70, L. monocytogenes counts on PDA-treated frankfurters were consistently lower (P<0.05) and after 70 days of storage, the pathogen counts were reduced to undetectable levels on frankfurters treated with PDA-HP combinations at 65 °C, and by combinations of BR and TC with HP at 55 °C. Results suggest that PDAs alone, or in combination with HP could be effectively used as post-processing dips to reduce L. monocytogenes on frankfurters, although follow-up studies on sensory and quality characteristics of PDA-treated frankfurters are necessary.


Assuntos
Anti-Infecciosos/farmacologia , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Peróxido de Hidrogênio/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Produtos da Carne/microbiologia , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Listeria monocytogenes/fisiologia , Temperatura
12.
J Food Prot ; 76(2): 318-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23433381

RESUMO

Two naturally occurring, generally recognized as safe compounds, namely, caprylic acid (CA) (1%) and b -resorcylic acid (BR) (1%), and their combination, applied at 23 and 60°C were evaluated for their antimicrobial effects against Escherichia coli O157:H7 on cattle hides in the presence and absence of bovine feces. Fresh cleaned cattle hides were cut into pieces (5 cm(2)), air dried, and inoculated with a five-strain mixture of nalidixic acid-resistant (50 µg/ml) E. coli O157:H7 (∼8.0 log CFU). The hide samples were air dried under a biosafety hood for 2 h and sprayed with 95% ethanol, 1% CA, 1% BR, or a mixture of 1% CA and 1% BR at 23 or 60°C. The hide samples were kept at 23°C, and E. coli O157:H7 populations were determined at 2 and 5 min after treatment. Both CA and BR were effective in decreasing E. coli O157:H7 populations on hides by 3 to 4 log CFU/cm(2) (P < 0.05). Sterile bovine feces had no effect on the decontaminating property of CA and BR on cattle hides (P > 0.05). Results of this study indicate that CA and BR could potentially be used to decontaminate cattle hides, but follow-up research under slaughterhouse conditions is warranted.


Assuntos
Caprilatos/farmacologia , Bovinos/microbiologia , Desinfetantes/farmacologia , Desinfecção/métodos , Escherichia coli O157/efeitos dos fármacos , Hidroxibenzoatos/farmacologia , Matadouros , Animais , Contagem de Colônia Microbiana , Fezes/microbiologia , Temperatura
13.
Int J Food Microbiol ; 157(1): 88-94, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22608657

RESUMO

Listeria monocytogenes (LM) is a major foodborne pathogen causing septicemia, meningitis and death in humans. LM infection is preceded by its attachment to and invasion of human intestinal epithelium followed by systemic spread. The major virulence factors in LM include motility, hemolysin and lecithinase production. Reducing LM attachment to and invasion of host tissue and production of virulence factors could potentially control listeriosis in humans. This study investigated the efficacy of sub-inhibitory concentrations (SICs, concentrations not inhibiting bacterial growth) of three, generally regarded as safe (GRAS)-status, plant-derived antimicrobial compounds in reducing LM attachment to and invasion of human colon adenocarcinoma (Caco-2) and human brain microvascular endothelial cells (HBMEC). Additionally, the effect of these compounds on the aforementioned LM virulence factors was studied. The compounds and their respective SICs used relative to their MICs were trans-cinnamaldehyde (TC 0.50mM, 0.75mM with the MIC of 0.90mM), carvacrol (CR 0.50mM, 0.65mM with the MIC of 0.75mM), and thymol (TY 0.33mM, 0.50mM with the MIC of 0.60mM). All three-plant antimicrobials reduced LM adhesion to and invasion of Caco-2 and HBMEC (p<0.05). The compounds also decreased LM motility, hemolysin production and lecithinase activity (p<0.05). Real-time PCR data revealed that TC, CR, and TY down-regulated the expression of LM virulence genes by >3.0 folds compared to controls (p<0.05). Results suggest that TC, CR, and TY could potentially be used to control LM infection; however, in vivo studies are necessary to validate these results.


Assuntos
Anti-Infecciosos/farmacologia , Regulação para Baixo , Listeria monocytogenes/patogenicidade , Extratos Vegetais/farmacologia , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Encéfalo/citologia , Células CACO-2 , Técnicas de Cultura de Células , Células Endoteliais , Doenças Transmitidas por Alimentos/prevenção & controle , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/fisiologia , Listeriose/prevenção & controle , Fosfolipases/metabolismo , Virulência/genética , Fatores de Virulência/genética
14.
Appl Environ Microbiol ; 78(12): 4538-41, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22467506

RESUMO

The efficacy of octenidine hydrochloride (OH; 0.025, 0.15, and 0.25%) for inactivating Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes on cattle hides was investigated at 23°C in the presence and absence of bovine feces. All tested concentrations of OH were effective in decreasing more than 5.0 log CFU of bacteria/cm(2) in 5 min (P < 0.01). The results suggest that OH could be used to decontaminate cattle hides; however, further studies under commercial settings are necessary to validate these results.


Assuntos
Carga Bacteriana , Desinfetantes/administração & dosagem , Escherichia coli O157/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Piridinas/administração & dosagem , Salmonella/efeitos dos fármacos , Pele/microbiologia , Animais , Bovinos , Escherichia coli O157/isolamento & purificação , Fezes , Iminas , Listeria monocytogenes/isolamento & purificação , Salmonella/isolamento & purificação , Temperatura
15.
Appl Environ Microbiol ; 78(8): 2981-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22327574

RESUMO

The efficacies of trans-cinnamaldehyde (TC) and eugenol (EG) for reducing Salmonella enterica serovar Enteritidis colonization in broiler chickens were investigated. In three experiments for each compound, 1-day-old chicks (n = 75/experiment) were randomly assigned to five treatment groups (n = 15/treatment group): negative control (-ve S. Enteritidis, -ve TC, or EG), compound control (-ve S. Enteritidis, +ve 0.75% [vol/wt] TC or 1% [vol/wt] EG), positive control (+ve S. Enteritidis, -ve TC, or EG), low-dose treatment (+ve S. Enteritidis, +ve 0.5% TC, or 0.75% EG), and high-dose treatment (+ve S. Enteritidis, +ve 0.75% TC, or 1% EG). On day 0, birds were tested for the presence of any inherent Salmonella (n = 5/experiment). On day 8, birds were inoculated with ∼8.0 log(10) CFU S. Enteritidis, and cecal colonization by S. Enteritidis was ascertained (n = 10 chicks/experiment) after 24 h (day 9). Six birds from each treatment group were euthanized on days 7 and 10 after inoculation, and cecal S. Enteritidis numbers were determined. TC at 0.5 or 0.75% and EG at 0.75 or 1% consistently reduced (P < 0.05) S. Enteritidis in the cecum (≥3 log(10) CFU/g) after 10 days of infection in all experiments. Feed intake and body weight were not different for TC treatments (P > 0.05); however, EG supplementation led to significantly lower (P < 0.05) body weights. Follow-up in vitro experiments revealed that the subinhibitory concentrations (SICs, the concentrations that did not inhibit Salmonella growth) of TC and EG reduced the motility and invasive abilities of S. Enteritidis and downregulated expression of the motility genes flhC and motA and invasion genes hilA, hilD, and invF. The results suggest that supplementation with TC and EG through feed can reduce S. Enteritidis colonization in chickens.


Assuntos
Acroleína/análogos & derivados , Ceco/microbiologia , Galinhas/microbiologia , Eugenol/administração & dosagem , Extratos Vegetais/administração & dosagem , Salmonelose Animal/prevenção & controle , Salmonella enteritidis/efeitos dos fármacos , Acroleína/administração & dosagem , Acroleína/isolamento & purificação , Animais , Antibacterianos/administração & dosagem , Antibacterianos/isolamento & purificação , Carga Bacteriana , Peso Corporal , Eugenol/isolamento & purificação , Comportamento Alimentar , Extratos Vegetais/isolamento & purificação , Salmonelose Animal/patologia , Salmonella enteritidis/isolamento & purificação
16.
Food Microbiol ; 27(6): 841-4, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20630328

RESUMO

The effect of trans-cinnamaldehyde (TC) on the inactivation of Escherichia coli O157:H7 in undercooked ground beef patties was investigated. A five-strain mixture of E. coli O157:H7 was inoculated into ground beef (7.0log CFU/g), followed by addition of TC (0, 0.15, and 0.3%). The meat was formed into patties and stored at 4 degrees C for 5 days or at -18 degrees C for 7 days. The patties were cooked to an internal temperature of 60 or 65 degrees C, and E. coli O157:H7 was enumerated. The numbers of E. coli O157:H7 did not decline during storage of patties. However, cooking of patties containing TC significantly reduced (P<0.05) E. coli O157:H7 counts, by >5.0log CFU/g, relative to the reduction in controls cooked to the same temperatures. The D-values at 60 and 65 degrees C of E. coli O157:H7 in TC-treated patties (1.85 and 0.08min, respectively) were significantly lower (P<0.05) than the corresponding D-values for the organism in control patties (2.70 and 0.29min, respectively). TC-treated patties were more color stable and showed significantly lower lipid oxidation (P<0.05) than control samples. TC enhanced the heat sensitivity of E. coli O157:H7 and could potentially be used as an antimicrobial for ensuring pathogen inactivation in undercooked patties. However detailed sensory studies will be necessary to determine the acceptability to consumers of TC in ground beef patties.


Assuntos
Acroleína/análogos & derivados , Escherichia coli O157/efeitos dos fármacos , Conservação de Alimentos/métodos , Produtos da Carne/microbiologia , Acroleína/farmacologia , Animais , Bovinos , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Relação Dose-Resposta a Droga , Escherichia coli O157/crescimento & desenvolvimento , Aromatizantes/farmacologia , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Temperatura Alta , Humanos
17.
J Urol ; 184(1): 358-63, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20488489

RESUMO

PURPOSE: Urinary tract infections are the most common hospital acquired infections in humans, caused primarily by uropathogenic Escherichia coli. Indwelling urinary catheters for bladder drainage in humans become encrusted with uropathogenic E. coli biofilms that are resistant to common antibiotics, resulting in chronic infections. We studied the efficacy of the cinnamon ingredient trans-cinnamaldehyde (Sigma) for preventing uropathogenic E. coli biofilm. We also determined the efficacy of trans-cinnamaldehyde as an ingredient in catheter lock solution to inactivate preformed uropathogenic E. coli biofilm. MATERIALS AND METHODS: Polystyrene plates and urinary catheters inoculated with uropathogenic E. coli (5 to 6.0 log cfu) were treated with trans-cinnamaldehyde (0%, 0.1%, 0.25% or 0.5%) at 37C. Catheters with uropathogenic E. coli biofilm were also treated with lock solution containing trans-cinnamaldehyde (0%, 1%, 1.25% or 1.5%). Uropathogenic E. coli biofilm on control and trans-cinnamaldehyde treated plates and catheters was determined on incubation days 0, 1, 3 and 5. Trans-cinnamaldehyde potential cytotoxity, if any, was determined in HTB-4 bladder epithelial cells (ATCC). RESULTS: At all concentrations trans-cinnamaldehyde effectively prevented uropathogenic E. coli biofilm on plates and catheters. As a constituent in catheter lock solution, it inactivated uropathogenic E. coli biofilm on catheters. Trans-cinnamaldehyde produced no cytotoxic effects on human bladder epithelial cells at the tested concentrations. CONCLUSIONS: Results suggest that trans-cinnamaldehyde may be applied as a catheter surface coating or as an ingredient in catheter lock solution to prevent urinary tract infection in humans.


Assuntos
Acroleína/análogos & derivados , Biofilmes/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções Urinárias/tratamento farmacológico , Escherichia coli Uropatogênica/efeitos dos fármacos , Acroleína/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Cateteres de Demora/efeitos adversos , Cateteres de Demora/microbiologia , Células Cultivadas , Contaminação de Equipamentos/prevenção & controle , Infecções por Escherichia coli/microbiologia , Análise Fatorial , Humanos , Técnicas In Vitro , Microscopia Confocal , Poliestirenos , Cateterismo Urinário/efeitos adversos , Infecções Urinárias/microbiologia
18.
Int J Food Microbiol ; 141(1-2): 126-9, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20442003

RESUMO

This study investigated the antimicrobial effect of low concentrations of trans-cinnamaldehyde (TC) on Escherichia coli O157:H7 in apple juice and apple cider. A five-strain mixture of E. coli O157:H7 was inoculated into apple juice or cider at approximately 6.0 log CFU/ml, followed by the addition of TC (0%v/v, 0.025%v/v, 0.075%v/v and 0.125%v/v). The inoculated apple juice samples were incubated at 23 degrees C and 4 degrees C for 21 days, whereas the cider samples were stored only at 4 degrees C. The pH of apple juice and cider, and E. coli O157:H7 counts were determined on days 0, 1, 3, 5, 7, 14 and 21. TC was effective (P<0.05) in inactivating E. coli O157:H7 in apple juice and apple cider. At 23 degrees C, 0.125 and 0.075%v/v TC completely inactivated E. coli O157:H7 in apple juice (negative by enrichment) on days 1 and 3, respectively. At 4 degrees C, 0.125 and 0.075%v/v TC decreased the pathogen counts in the juice and cider to undetectable levels on days 3 and 5, respectively. Results indicate that low concentrations of TC could be used as an effective antimicrobial to inactivate E. coli O157:H7 in apple juice and apple cider.


Assuntos
Acroleína/análogos & derivados , Antibacterianos/farmacologia , Bebidas/microbiologia , Escherichia coli O157/efeitos dos fármacos , Conservação de Alimentos/métodos , Frutas/microbiologia , Malus/microbiologia , Acroleína/farmacologia , Bebidas Alcoólicas/microbiologia , Microbiologia de Alimentos
19.
J Food Prot ; 72(4): 722-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19435218

RESUMO

Salmonella Enteritidis is a major foodborne pathogen for which chickens serve as reservoir hosts. Reducing Salmonella Enteritidis carriage in chickens would reduce contamination of poultry meat and eggs with this pathogen. We investigated the prophylactic efficacy of feed supplemented with caprylic acid (CA), a natural, generally recognized as safe eight-carbon fatty acid, for reducing Salmonella Enteritidis colonization in chicks. One hundred commercial day-old chicks were randomly divided into five groups of 20 birds each: CA control (no Salmonella Enteritidis, CA), positive control (Salmonella Enteritidis, no CA), negative control (no Salmonella Enteritidis, no CA), and 0.7 or 1% CA. Water and feed were provided ad libitum. On day 8, birds were inoculated with 5.0 log CFU of Salmonella Enteritidis by crop gavage. Six birds from each group were euthanized on days 1, 7, and 10 after challenge, and Salmonella Enteritidis populations in the cecum, small intestine, cloaca, crop, liver, and spleen were enumerated. The study was replicated three times. CA supplementation at 0.7 and 1% consistently decreased Salmonella Enteritidis populations recovered from the treated birds. Salmonella Enteritidis counts in the tissue samples of CA-treated chicks were significantly lower (P < 0.05) than those of control birds on days 7 and 10 after challenge. Feed intake and body weight did not differ between the groups. Histological examination revealed no pathological changes in the cecum and liver of CA-supplemented birds. The results suggest that prophylactic CA supplementation through feed can reduce Salmonella Enteritidis colonization in day-old chicks and may be a useful treatment for reducing Salmonella Enteritidis carriage in chickens.


Assuntos
Caprilatos/farmacologia , Galinhas , Dieta/veterinária , Salmonelose Animal/prevenção & controle , Salmonella enteritidis/efeitos dos fármacos , Ração Animal , Animais , Antibacterianos/farmacologia , Portador Sadio , Ceco/microbiologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Conteúdo Gastrointestinal/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle
20.
Foodborne Pathog Dis ; 5(6): 763-71, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18991539

RESUMO

Cattle serve as a major reservoir of E. coli O157:H7 and excrete the pathogen in feces. Environmental persistence of E. coli O157:H7 plays a vital role in its epidemiology on farms, and cattle water troughs are a demonstrated long-term reservoir of E. coli O157:H7 for animals. The objective of this study was to investigate the potential of low concentrations of trans-cinnamaldehyde for killing E. coli O157:H7 in cattle drinking-water. A five-strain mixture of E. coli O157:H7 was inoculated (at approximately 8.0 log colony-forming units [CFU]/mL) into 100 mL samples of well water containing 0, 0.03, 0.05, 0.07, or 0.1% trans-cinnamaldehyde. Additionally, water samples containing (1% w/v) bovine feces or feed were also included. The samples were incubated at 21 degrees , 8 degrees , or 4 degrees C for 7 days and tested for viable E. coli O157:H7 on days 0, 1, 3, 5, and 7. Triplicate samples of each treatment and control were included and the study was replicated twice. All concentrations of trans-cinnamaldehyde were effective in killing E. coli O157:H7 in water, but the magnitude of killing significantly increased with increase in trans-cinnamaldehyde concentration and storage temperature (p < 0.05). The presence of feed or feces in water decreased the antibacterial effect of trans-cinnamaldehyde on E. coli O157:H7 (p < 0.05). This study indicated that trans-cinnamaldehyde is effective in killing E. coli O157:H7 in cattle drinking-water, but detailed palatability studies on cattle intake of water containing the antimicrobial are needed.


Assuntos
Acroleína/análogos & derivados , Antibacterianos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Microbiologia da Água , Acroleína/farmacologia , Animais , Bovinos , Contagem de Colônia Microbiana , Reservatórios de Doenças/veterinária , Relação Dose-Resposta a Droga , Ingestão de Líquidos , Escherichia coli O157/crescimento & desenvolvimento , Fezes/microbiologia , Água Doce/microbiologia , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA