RESUMO
The crystallographic structure of the FolB enzyme from Mycobacterium tuberculosis (MtFolB), complexed with its inhibitor 8-mercaptoguanine (8-MG), was elucidated at a resolution of 1.95 Å. A novel series of S8-functionalized 8-MG derivatives were synthesised and evaluated as in vitro inhibitors of dihydroneopterin aldolase (DHNA, EC 4.1.2.25) activity of MtFolB. These compounds exhibited IC50 values in the submicromolar range. Evaluation of the activity for five compounds indicated their inhibition mode and inhibition constants. Molecular docking analyses were performed to determine the enzyme-inhibitor intermolecular interactions and ligand conformations upon complex formation. The inhibitory activities of all compounds against the M. tuberculosis H37Rv strain were evaluated. Compound 3e exhibited a minimum inhibitory concentration in the micromolar range. Finally, Compound 3e showed no apparent toxicity in both HepG2 and Vero cells. The findings presented herein will advance the quest for novel, specific inhibitors targeting MtFolB, an attractive molecular target for TB drug development.
Assuntos
Aldeído Liases , Antituberculosos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Antituberculosos/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Relação Estrutura-Atividade , Aldeído Liases/antagonistas & inibidores , Aldeído Liases/metabolismo , Aldeído Liases/química , Células Vero , Estrutura Molecular , Cristalografia por Raios X , Chlorocebus aethiops , Animais , Guanina/farmacologia , Guanina/química , Guanina/análogos & derivados , Guanina/síntese química , Simulação de Acoplamento Molecular , Células Hep G2 , Modelos MolecularesRESUMO
The increasing prevalence of drug-resistant Mycobacterium tuberculosis strains stimulates the discovery of new drug candidates. Among them are 8-hydroxyquinoline (8HQ) derivatives that exhibited antimicrobial properties. Unfortunately, there is a lack of data assessing possible targets for this class mainly against Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (MtInhA), a validated target in this field. Thus, the main purpose of this study was to identify 8HQ derivatives that are active against M. tuberculosis and MtInhA. Initially, the screening against the microorganism of a small antimicrobial library and its new derivatives that possess some structural similarity with MtInhA inhibitors identified four 7-substituted-8HQ (series 5 - 5a, 5c, 5d and 5i) and four 5-substituted-8HQ active derivatives (series 7 - 7a, 7c, 7d and 7j). In general, the 7-substituted 8-HQs were more potent and, in the enzymatic assay, were able to inhibit MtInhA at low micromolar range. However, the 5-substituted-8-HQs that presented antimycobacterial activity were not able to inhibit MtInhA. These findings indicate the non-promiscuous nature of 8-HQ derivatives and emphasize the significance of selecting appropriate substituents to achieve in vitro enzyme inhibition. Finally, 7-substituted-8HQ series are promising new derivatives for structure-based drug design and further development.
Assuntos
Antituberculosos , Inibidores Enzimáticos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Oxiquinolina , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Relação Estrutura-Atividade , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Oxiquinolina/química , Oxiquinolina/farmacologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Relação Dose-Resposta a DrogaRESUMO
The aims of this work were to optimize the production of Erwinia carotovoral-asparaginase II enzyme in Escherichia coli by different fed-batch cultivation strategies using a benchtop bioreactor and to evaluate the therapeutic potential of the recombinant enzyme against different acute lymphoblastic leukemia cell lines. The highest enzyme activities (â¼98,000 U/L) were obtained in cultures using the DO-stat feeding strategy with induction in 18 h of culture. Under these experimental conditions, the maximum values for recombinant l-asparaginase II (rASNase) yield per substrate, rASNase yield per biomass, and productivity were approximately 1204 U/gglucose, 3660 U/gcells, and 3260 U/(L·h), respectively. This condition was efficient for achieving high yields of the recombinant enzyme, which was purified and used in in vitro antileukemic potential tests. Of all the leukemic cell lines tested, RS4;11 showed the highest sensitivity to rASNase, with an IC50 value of approximately 0.0006 U/mL and more than 70% apoptotic cells. The study demonstrated that the cultivation strategies used were efficient for obtaining high yield and productivity of rASNase with therapeutic potential inasmuch as cytotoxic activity and induction of apoptosis were demonstrated for this protein.
RESUMO
Staphylococcus aureus is the etiologic agent of many nosocomial infections, and its biofilm is frequently isolated from medical devices. Moreover, the dissemination of multidrug-resistant (MDR) strains from this pathogen, such as methicillin-resistant S. aureus (MRSA) strains, is a worldwide public health issue. The inhibition of biofilm formation can be used as a strategy to weaken bacterial resistance. Taking that into account, we analysed the ability of marine sponge-associated bacteria to produce antibiofilm molecules, and we found that marine Priestia sp., isolated from marine sponge Scopalina sp. collected on the Brazilian coast, secretes proteins that impair biofilm development from S. aureus. Partially purified proteins (PPP) secreted after 24 hours of bacterial growth promoted a 92% biofilm mass reduction and 4.0 µg/dL was the minimum concentration to significantly inhibit biofilm formation. This reduction was visually confirmed by light microscopy and Scanning Electron Microscopy (SEM). Furthermore, biochemical assays showed that the antibiofilm activity of PPP was reduced by ethylenediaminetetraacetic acid (EDTA) and 1,10 phenanthroline (PHEN), while it was stimulated by zinc ions, suggesting an active metallopeptidase in PPP. This result agrees with mass spectrometry (MS) identification, which indicated the presence of a metallopeptidase from the M28 family. Additionally, whole-genome sequencing analysis of Priestia sp. shows that gene ywad, a metallopeptidase-encoding gene, was present. Therefore, the results presented herein indicate that PPP secreted by the marine Priestia sp. can be explored as a potential antibiofilm agent and help to treat chronic infections.
Assuntos
Antibacterianos , Proteínas de Bactérias , Biofilmes , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Animais , Testes de Sensibilidade Microbiana , Brasil , Poríferos/microbiologiaRESUMO
Utilizing a scaffold-hopping strategy from the drug candidate telacebec, a novel series of 2-(quinolin-4-yloxy)acetamides was synthesized and evaluated as inhibitors of Mycobacterium tuberculosis (Mtb) growth. These compounds demonstrated potent activity against drug-sensitive and multidrug-resistant strains (MIC ≤ 0.02 µM). Leading compounds were evaluated against a known qcrB resistant strain (T313A), and their loss in activity suggested that the cytochrome bc1 complex is the likely target. Additionally, these structures showed high selectivity regarding mammalian cells (selectivity index > 500) and stability across different aqueous media. Furthermore, some of the synthesized quinolines demonstrated aqueous solubility values that exceeded those of telacebec, while maintaining low rates of metabolism. Finally, a selected compound prevented Mtb growth by more than 1.7 log10 colony forming units in a macrophage model of tuberculosis (TB) infection. These findings validate the proposed design and introduce new 2-(quinolin-4-yloxy)acetamides with potential for development in TB drug discovery campaigns.
RESUMO
Astrocytes are glial cells that play key roles in neuroinflammation, which is a common feature in diabetic encephalopathy and aging process. Metformin is an antidiabetic compound that shows neuroprotective properties, including in inflammatory models, but astroglial signaling pathways involved are still poorly known. Interferons α/ß are cytokines that participate in antiviral responses and the lack of their signaling increases susceptible to viral infections. Here, we investigated the effects of metformin on astrocytes from hypothalamus, a crucial brain region related to inflammatory processes. Astrocyte cultures were derived from interferon α/ß receptor knockout (IFNα/ßR-/-) and wild-type (WT) mice. Metformin did not change the expression of glial fibrillary acidic protein but caused an anti-inflammatory effect by decreasing pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1ß), as well as increasing gene expression of anti-inflammatory proteins interleukin-10 and Nrf2 (nuclear factor erythroid derived 2 like 2). However, nuclear factor κB p65 and cyclooxygenase 2 were downregulated in WT astrocytes and upregulated in IFNα/ßR-/- astrocytes. AMP-activated protein kinase (AMPK), a molecular target of metformin, was upregulated only in WT astrocytes, while sirtuin 1 increased in both mice models. The expression of inducible nitric oxide synthase was decreased in WT astrocytes and heme oxygenase 1 was increased in IFNα/ßR-/- astrocytes. Although loss of IFNα/ßR-mediated signaling affects some effects of metformin, our results support beneficial roles of this drug in hypothalamic astrocytes. Moreover, paradoxical response of metformin may involve AMPK. Thus, metformin can mediate glioprotection due its effects on age-related disorders in non-diabetic and diabetic encephalopathy individuals.
Assuntos
Astrócitos , Hipotálamo , Metformina , Camundongos Knockout , Animais , Metformina/farmacologia , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Camundongos , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , Hospedeiro Imunocomprometido , Proteínas Quinases Ativadas por AMP/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células Cultivadas , Sirtuína 1/metabolismo , Sirtuína 1/genéticaRESUMO
We analyzed the ability of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) itself and SARS-CoV-2-IgG immune complexes to trigger human monocyte necroptosis. SARS-CoV-2 was able to induce monocyte necroptosis dependently of MLKL activation. Necroptosis-associated proteins (RIPK1, RIPK3 and MLKL) were involved in SARS-CoV-2N1 gene expression in monocytes. SARS-CoV-2 immune complexes promoted monocyte necroptosis in a RIPK3- and MLKL-dependent manner, and Syk tyrosine kinase was necessary for SARS-CoV-2 immune complex-induced monocyte necroptosis, indicating the involvement of Fcγ receptors on necroptosis. Finally, we provide evidence that elevated LDH levels as a marker of lytic cell death are associated with COVID-19 pathogenesis.
Assuntos
Complexo Antígeno-Anticorpo , COVID-19 , Humanos , Complexo Antígeno-Anticorpo/metabolismo , SARS-CoV-2 , Proteínas Quinases/metabolismo , Monócitos , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismoRESUMO
Herein a series of 4-aminoquinolines were synthesized in an attempt to optimize and study the structural features related to LABIO-17 biological activity, a Mycobacterium tuberculosis NADH-dependent enoyl-acyl carrier protein reductase (MtInhA) inhibitor previously identified by a virtual-ligand-screening approach. Structure-activity relationships led to novel submicromolar inhibitors of MtInhA and potent antitubercular agents. The lead compound is 87-fold more potent as enzymatic inhibitors and 32-fold more potent against M. tuberculosis H37Rv strain in comparison with LABIO-17. These molecules were also active against multidrug-resistant strains, devoid of apparent toxicity to mammalian cells and showed favorable in vitro ADME profiles. Additionally, these compounds were active in an intracellular model of tuberculosis (TB) infection, showed no genotoxicity signals, satisfactory absorption parameters and absence of in vivo acute toxicity. Finally, treatment with selected 4-aminoquinoline for two weeks produced bacteriostatic effect in a murine model of TB. Taken together, these findings indicate that this chemical class may furnish candidates for the future development of drug-sensitive and drug-resistant tuberculosis treatments.
Assuntos
Aminoquinolinas , Antituberculosos , Inibidores Enzimáticos , Mycobacterium tuberculosis , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+) , Animais , Camundongos , Aminoquinolinas/síntese química , Aminoquinolinas/farmacologia , Aminoquinolinas/uso terapêutico , Antituberculosos/síntese química , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+)/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Tuberculose/tratamento farmacológico , Modelos Animais de DoençasRESUMO
Tuberculosis (TB) is one of the main causes of death from a single pathological agent, Mycobacterium tuberculosis (Mtb). In addition, the emergence of drug-resistant TB strains has exacerbated even further the treatment outcome of TB patients. It is thus needed the search for new therapeutic strategies to improve the current treatment and to circumvent the resistance mechanisms of Mtb. The shikimate kinase (SK) is the fifth enzyme of the shikimate pathway, which is essential for the survival of Mtb. The shikimate pathway is absent in humans, thereby indicating SK as an attractive target for the development of anti-TB drugs. In this work, a combination of in silico and in vitro techniques was used to identify potential inhibitors for SK from Mtb (MtSK). All compounds of our in-house database (Centro de Pesquisas em Biologia Molecular e Funcional, CPBMF) were submitted to in silico toxicity analysis to evaluate the risk of hepatotoxicity. Docking experiments were performed to identify the potential inhibitors of MtSK according to the predicted binding energy. In vitro inhibitory activity of MtSK-catalyzed chemical reaction at a single compound concentration was assessed. Minimum inhibitory concentration values for in vitro growth of pan-sensitive Mtb H37Rv strain were also determined. The mixed approach implemented in this work was able to identify five compounds that inhibit both MtSK and the in vitro growth of Mtb.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Simulação de Acoplamento Molecular , Antituberculosos/farmacologia , Antituberculosos/química , Tuberculose/tratamento farmacológicoRESUMO
Using cycloalkyl and electron-donating groups to decrease the carbonyl electrophilicity, a novel series of 2-(quinoline-4-yloxy)acetamides was synthesized and evaluated as in vitro inhibitors of Mycobacterium tuberculosis (Mtb) growth. Structure-activity relationship studies led to selective and potent antitubercular agents with minimum inhibitory concentrations in the submicromolar range against drug-sensitive and drug-resistant Mtb strains. An evaluation of the activity of the lead compounds against a spontaneous qcrB mutant strain indicated that the structures targeted the cytochrome bc 1 complex. In addition, selected molecules inhibited Mtb growth in a macrophage model of tuberculosis infection. Furthermore, the leading compound was chemically stable depending on the context and showed good kinetic solubility, high permeability, and a low rate of in vitro metabolism. Finally, the pharmacokinetic profile of the compound was assessed after oral administration to mice. To the best of our knowledge, for the first time, a 2-(quinoline-4-yloxy)acetamide was obtained with a sufficient exposure, which may enable in vivo effectiveness and its further development as an antituberculosis drug candidate.
RESUMO
Different approaches are in use to improve our knowledge about the causative agent of coronavirus disease (COVID-19). Cell culture-based methods are the better way to perform viral isolation, evaluate viral infectivity, and amplify the virus. Furthermore, next-generation sequencing (NGS) have been essential to analyze a complete genome and to describe new viral species and lineages that have arisen over time. Four naso-oropharyngeal swab samples, collected from April to July of 2020, were isolated and sequenced aiming to produce viral stocks and analyze the mutational profile of the found lineage. B.1.1.33 was the lineage detected in all sequences. Although the samples belong to the same lineage, it was possible to evaluate different mutations found including some that were first described in these sequences, like the S:H655Y and T63N. The results described here can help to elicit how the pandemic started to spread and how it has been evolving in south Brazil.
Assuntos
COVID-19 , SARS-CoV-2 , Brasil , Genoma Viral , Humanos , Mutação , Filogenia , SARS-CoV-2/genéticaRESUMO
Flexibility and function are related properties in the study of protein dynamics. Flexibility reflects in the conformational potential of proteins and thus in their functionalities. The presence of interactions between protein-ligands and protein-protein complexes, substrates, and environmental changes can alter protein plasticity, acting from the rearrangement of the side chains of amino acids to the folding/unfolding of large structural motifs. To evaluate the effects of the flexibility in protein systems, we defined the enzyme 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis, or MtInhA, as our target system. MtInhA is biologically active as a tetramer in solution; however, computational studies commonly use the monomer justifying the independence of its active sites due to their distances. However, differences in flexibility between tertiary and quaternary structures could present impact on the size of the active site, influencing the drug discovery process. In this study, we investigated the influence of flexibility restrictions in A- and B-loops of the MtInhA in order to suggest a monomeric structure that describes the conformational behavior of the tetrameric system. Overall, we observed that simulations where restrictions were applied to the A- and B-loops present a more similar behavior to the native structure when compared to unrestricted simulations. Therefore, our work presents a monomeric model of MtInhA, which has conformational characteristics of the biologically active structure. Thus, the data obtained in this work can be applied to the MtInhA system for the generation of more reliable flexible models for molecular docking experiments, and also for the performance of longer simulations by molecular dynamics and with a lower computational cost.
Assuntos
Simulação de Dinâmica Molecular , Mycobacterium tuberculosis , Proteínas de Bactérias/química , Simulação de Acoplamento Molecular , Oxirredutases/metabolismoRESUMO
Tuberculosis remains a global health problem that affects millions of people around the world. Despite recent efforts in drug development, new alternatives are required. Herein, a series of 27 N-(4-(benzyloxy)benzyl)-4-aminoquinolines were synthesized and evaluated for their ability to inhibit the M. tuberculosis H37Rv strain. Two of these compounds exhibited minimal inhibitory concentrations (MICs) similar to the first-line drug isoniazid. In addition, these hit compounds were selective for the bacillus with no significant change in viability of Vero and HepG2 cells. Finally, chemical stability, permeability and metabolic stability were also evaluated. The obtained data show that the molecular hits can be optimized aiming at the development of drug candidates for tuberculosis treatment.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Aminoquinolinas/farmacologia , Antituberculosos/química , Humanos , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológicoRESUMO
SUMMARY: Genome annotation pipelines traditionally exclude open reading frames (ORFs) shorter than 100 codons to avoid false identifications. However, studies have been showing that these may encode functional microproteins with meaningful biological roles. We developed µProteInS, a proteogenomics pipeline that combines genomics, transcriptomics and proteomics to identify novel microproteins in bacteria. Our pipeline employs a model to filter out low confidence spectra, to avoid the need for manually inspecting Mass Spectrometry data. It also overcomes the shortcomings of traditional approaches that usually exclude overlapping genes, leaderless transcripts and non-conserved sequences, characteristics that are common among small ORFs (smORFs) and hamper their identification. AVAILABILITY AND IMPLEMENTATION: µProteInS is implemented in Python 3.8 within an Ubuntu 20.04 environment. It is an open-source software distributed under the GNU General Public License v3, available as a command-line tool. It can be downloaded at https://github.com/Eduardo-vsouza/uproteins and either installed from source or executed as a Docker image. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Proteogenômica , Fases de Leitura Aberta , Proteogenômica/métodos , Software , Genômica/métodos , Bactérias/genéticaRESUMO
This study aimed to develop single-step purification and immobilization processes on cellulosic supports of ß-galactosidase from Kluyveromyces sp. combined with the Cellulose-Binding Domain (CBD) tag. After 15 min of immobilization, with an enzymatic load of 150 U/gsupport, expressed activity values reached 106.88 (microcrystalline cellulose), 115.03 (alkaline nanocellulose), and 108.47 IU/g (acid nanocellulose). The derivatives produced were less sensitive to the presence of galactose in comparison with the soluble purified enzyme. Among the cations assessed (Na+, K+, Mg2+, and Ca2+), magnesium provided the highest increase in the enzymatic activity of ß-galactosidases immobilized on cellulosic supports. Supports and derivatives showed no cytotoxic effect on the investigated cell cultures (HepG2 and Vero). Derivatives showed high operational stability in the hydrolysis of milk lactose and retained from 53 to 64% of their hydrolysis capacity after 40 reuse cycles. This study obtained biocatalyzers with promising characteristics for application in the food industry. Biocatalyzers were obtained through a low-cost one-step sustainable bioprocess of purification and immobilization of a ß-galactosidase on cellulose via CBD.
Assuntos
Enzimas Imobilizadas , Lactose , Celulose , Estabilidade Enzimática , Enzimas Imobilizadas/química , Hidrólise , Lactose/química , beta-Galactosidase/químicaRESUMO
For the first time, this work reported the one-step purification and targeted immobilization process of a ß-galactosidase (Gal) with the Cellulose Binding Domain (CBD) tag, by binding it to different magnetic cellulose supports. The process efficiency after ß-galactosidase-CBD immobilization on magnetic cellulose-based supports showed values of approximately 90% for all evaluated enzymatic loads. Compared with free Gal, derivatives showed affinity values between ß-galactosidase and the substrate 1.2 × higher in the lactose hydrolysis of milk. ß-Galactosidase-CBD's oriented immobilization process on supports increased the thermal stability of the immobilized enzyme by up to 7 × . After 15 cycles of reuse, both enzyme preparations showed a relative hydrolysis percentage of 50% of lactose in milk. The oriented immobilization process developed for purifying recombinant proteins containing the CBD tag enabled the execution of both steps simultaneously and quickly and the obtention of ß-galactosidases with promising catalytic characteristics for application in the food and pharmaceutical industries.
Assuntos
Celulose , Lactose , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Hidrólise , Fenômenos Magnéticos , beta-Galactosidase/metabolismoRESUMO
The epidemiological importance of mycobacterial species is indisputable, and the necessity to find new molecules that can inhibit their growth is urgent. The shikimate pathway, required for the synthesis of important bacterial metabolites, represents a set of targets for inhibitors of Mycobacterium tuberculosis growth. The aroA-encoded 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme catalyzes the sixth step of the shikimate pathway. In this study, we combined gene disruption, gene knockdown, point mutations (D61W, R134A, E321N), and kinetic analysis to evaluate aroA gene essentiality and vulnerability of its protein product, EPSPS, from Mycolicibacterium (Mycobacterium) smegmatis (MsEPSPS). We demonstrate that aroA-deficient cells are auxotrophic for aromatic amino acids (AroAAs) and that the growth impairment observed for aroA-knockdown cells grown on defined medium can be rescued by AroAA supplementation. We also evaluated the essentiality of selected MsEPSPS residues in bacterial cells grown without AroAA supplementation. We found that the catalytic residues R134 and E321 are essential, while D61, presumably important for protein dynamics and suggested to have an indirect role in catalysis, is not essential under the growth conditions evaluated. We have also determined the catalytic efficiencies (Kcat/Km) of recombinant wild-type (WT) and mutated versions of MsEPSPS (D61W, R134A, E321N). Our results suggest that drug development efforts toward EPSPS inhibition may be ineffective if bacilli have access to external sources of AroAAs in the context of infection, which should be evaluated further. In the absence of AroAA supplementation, aroA from M. smegmatis is essential, its essentiality is dependent on MsEPSPS activity, and MsEPSPS is vulnerable. IMPORTANCE We found that cells from Mycobacterium smegmatis, a model organism safer and easier to study than the disease-causing mycobacterial species, when depleted of an enzyme from the shikimate pathway, are auxotrophic for the three aromatic amino acids (AroAAs) that serve as building blocks of cellular proteins: l-tryptophan, l-phenylalanine, and l-tyrosine. That supplementation with only AroAAs is sufficient to rescue viable cells with the shikimate pathway inactivated was unexpected, since this pathway produces an end product, chorismate, that is the starting compound of essential pathways other than the ones that produce AroAAs. The depleted enzyme, the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), catalyzes the sixth step of shikimate pathway. Depletion of this enzyme inside cells was performed by disrupting or silencing the EPSPS-encoding aroA gene. Finally, we evaluated the essentiality of specific residues from EPSPS that are important for its catalytic activity, determined with experiments of enzyme kinetics using recombinant EPSPS mutants.
Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Aminoácidos Aromáticos/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/enzimologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/química , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Cinética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Alinhamento de SequênciaRESUMO
Tuberculosis has been described as a global health crisis since the 1990s, with an estimated 1.4 million deaths in the last year. Herein, a series of 20 1H-indoles were synthesized and evaluated as in vitro inhibitors of Mycobacterium tuberculosis (Mtb) growth. Furthermore, the top hit compounds were active against multidrug-resistant strains, without cross-resistance with first-line drugs. Exposing HepG2 and Vero cells to the molecules for 72 h showed that one of the evaluated structures was devoid of apparent toxicity. In addition, this 3-phenyl-1H-indole showed no genotoxicity signals. Finally, time-kill and pharmacodynamic model analyses demonstrated that this compound has bactericidal activity at concentrations close to the Minimum Inhibitory Concentration, coupled with a strong time-dependent behavior. To the best of our knowledge, this study describes the activity of 3-phenyl-1H-indole against Mtb for the first time.
Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Indóis/síntese química , Indóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana/métodos , Relação Estrutura-Atividade , Células VeroRESUMO
Human thymidine phosphorylase (hTP) is overexpressed in several solid tumors and is commonly associated with aggressiveness and unfavorable prognosis. 6-(((1,3-Dihydroxypropan-2-yl)amino)methyl)-5-iodopyrimidine-2,4(1H,3H)-dione (CPBMF-223) is a noncompetitive hTP inhibitor, which has been described as a tumor angiogenesis inhibitor. The present study investigated the effects of CPBMF-223 in a xenograft tumor induced by human colorectal carcinoma cells (HCT-116). Additionally, CPBMF-223 capacity to reduce cell migration, its toxicological profile, and pharmacokinetic characteristics, were also evaluated. The intraperitoneal treatment with CPBMF-223 markedly prevented the relative tumor growth with an efficacy similar to that observed for 5-fluorouracil. Interestingly, number of vessels were significantly decreased in the treated groups. Moreover, CPBMF-223 significantly reduced the migration of cell line HCT-116. In the Ames assay and in an acute oral toxicity test, the molecule did not alter any evaluated parameter. Using the zebrafish toxicity model, cardiac and locomotor parameters were slightly changed. Regarding the pharmacokinetics profile, CPBMF-223 showed clearance of 9.42 L/h/kg after intravenous administration, oral bioavailability of 13.5%, and a half-life of 0.75 h. Our findings shed new light on the role of hTP in colorectal cancer induced by HCT-116 cell in mice, pointing out CPBMF-223 as, hopefully, a promising drug candidate.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/enzimologia , Inibidores Enzimáticos/uso terapêutico , Timidina Fosforilase/antagonistas & inibidores , Inibidores da Angiogênese/farmacocinética , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/toxicidade , Animais , Antimetabólitos Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/toxicidade , Feminino , Fluoruracila/farmacologia , Células HCT116 , Meia-Vida , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Mutagenicidade , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-ZebraRESUMO
Antimalarial drugs have been suggested as promising scaffolds with anti-tubercular activities. In this work, we demonstrated, for the first time, the effectiveness of tafenoquine against mycobacteria. Firstly, tafenoquine inhibited the growth of Mycobacterium smegmatis and Mycobacterium tuberculosis with lower MICs values as compared to other antimalarial drugs, such as mefloquine, chloroquine, and primaquine. Importantly, tafenoquine was active against three multi-drug resistant strains of M. tuberculosis with MIC values similar to pan-sensitive strains, suggesting that tafenoquine is capable of evading the major mechanisms of resistance found in drug-resistant clinical isolates of M. tuberculosis. Importantly, tafenoquine displayed a synergistic effect when combined with mefloquine. In addition, tafenoquine displayed an improved activity compared to the groups treated with both isoniazid and rifampicin in the six-week nutrient starved M. tuberculosis cultures. This finding suggests that further investigations of tafenoquine against dormant mycobacteria are worth pursuing. Moreover, different concentrations of tafenoquine ranging from 1.25 to 80 µM displayed different effects against M. tuberculosis, from moderate (reduction of a 1.8 log CFU/mL) to potent bactericidal (reduction of a 4.2 log CFU/mL) activities. Tafenoquine may represent a hit for further drug optimization and for future clinical development as a new anti-mycobacterial agent, especially in cases of resistant and/or dormant forms of tuberculosis.