Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Blood ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388712

RESUMO

Abnormalities involving class I HLA are frequent in many lymphoma subtypes but have not yet been extensively studied in cutaneous T-cell lymphomas (CTCL). We characterized the occurrence of class I HLA abnormalities in 65 patients with advanced mycosis fungoides (MF) or Sézary syndrome (SS). Targeted DNA sequencing including coverage of HLA loci revealed at least one HLA abnormality in 26/65 patients (40%). Twelve unique somatic HLA mutations were identified across nine patients, and loss of heterozygosity or biallelic loss of HLA was found to affect 24 patients. Although specific HLA alleles were commonly disrupted, these events did not associate with decreased total class I HLA expression. Genetic events preferentially disrupted HLA alleles capable of presentation of greater numbers of putative neoantigens. HLA abnormalities co-occurred with other genetic immune evasion events and were associated with worse progression-free survival. Single-cell analyses demonstrated HLA abnormalities were frequently subclonal. Through analysis of serial samples, we observed disrupting class I HLA events change dynamically over the disease course. The dynamics of HLA disruption are highlighted in a patient receiving pembrolizumab, where resistance to pembrolizumab was associated with elimination of an HLA mutation. Overall, our findings show that genomic class I HLA abnormalities are common in advanced CTCL and may be an important consideration in understanding the effects of immunotherapy in CTCL.

2.
Cell Rep Med ; 5(5): 101527, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38670099

RESUMO

Cutaneous T cell lymphomas (CTCLs) are skin cancers with poor survival rates and limited treatments. While immunotherapies have shown some efficacy, the immunological consequences of administering immune-activating agents to CTCL patients have not been systematically characterized. We apply a suite of high-dimensional technologies to investigate the local, cellular, and systemic responses in CTCL patients receiving either mono- or combination anti-PD-1 plus interferon-gamma (IFN-γ) therapy. Neoplastic T cells display no evidence of activation after immunotherapy. IFN-γ induces muted endogenous immunological responses, while anti-PD-1 elicits broader changes, including increased abundance of CLA+CD39+ T cells. We develop an unbiased multi-omic profiling approach enabling discovery of immune modules stratifying patients. We identify an enrichment of activated regulatory CLA+CD39+ T cells in non-responders and activated cytotoxic CLA+CD39+ T cells in leukemic patients. Our results provide insights into the effects of immunotherapy in CTCL patients and a generalizable framework for multi-omic analysis of clinical trials.


Assuntos
Imunoterapia , Linfoma Cutâneo de Células T , Humanos , Linfoma Cutâneo de Células T/imunologia , Linfoma Cutâneo de Células T/terapia , Linfoma Cutâneo de Células T/patologia , Imunoterapia/métodos , Interferon gama/metabolismo , Interferon gama/imunologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/tratamento farmacológico , Masculino , Feminino , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Multiômica
3.
Haematologica ; 107(3): 702-714, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33792220

RESUMO

Primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma (pcAECyTCL) is a rare variant of cutaneous T-cell lymphoma with an aggressive clinical course and a very poor prognosis. Until now, neither a systematic characterization of genetic alterations driving pcAECyTCL has been performed, nor effective therapeutic regimes for patients have been defined. Here, we present the first highresolution genetic characterization of pcAECyTCL by using wholegenome and RNA sequencing. Our study provides a comprehensive description of genetic alterations (i.e., genomic rearrangements, copy number alterations and small-scale mutations) with pathogenic relevance in this lymphoma, including events that recurrently impact genes with important roles in the cell cycle, chromatin regulation and the JAKSTAT pathway. In particular, we show that mutually exclusive structural alterations involving JAK2 and SH2B3 predominantly underlie pcAECyTCL. In line with the genomic data, transcriptome analysis uncovered upregulation of the cell cycle, JAK2 signaling, NF-κB signaling and a high inflammatory response in this cancer. Functional studies confirmed oncogenicity of JAK2 fusions identified in pcAECyTCL and their sensitivity to JAK inhibitor treatment. Our findings strongly suggest that overactive JAK2 signaling is a central driver of pcAECyTCL, and consequently, patients with this neoplasm would likely benefit from therapy with JAK2 inhibitors such as Food and Drug Adminstration-approved ruxolitinib.


Assuntos
Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Linfócitos T CD8-Positivos/metabolismo , Humanos , Janus Quinase 2/genética , Linfoma Cutâneo de Células T/genética , Pele/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Linfócitos T Citotóxicos/metabolismo
4.
Haematologica ; 107(7): 1619-1632, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382383

RESUMO

Primary cutaneous anaplastic large cell lymphoma (pcALCL), a hematological neoplasm caused by skin-homing CD30+ malignant T cells, is part of the spectrum of primary cutaneous CD30+ lymphoproliferative disorders. To date, only a small number of molecular alterations have been described in pcALCL and, so far, no clear unifying theme that could explain the pathogenetic origin of the disease has emerged among patients. In order to clarify the pathogenetic basis of pcALCL, we performed high-resolution genetic profiling (genome/transcriptome) of this lymphoma (n=12) by using whole-genome sequencing, whole-exome sequencing and RNA sequencing. Our study, which uncovered novel genomic rearrangements, copy number alterations and small-scale mutations underlying this malignancy, revealed that the cell cycle, T-cell physiology regulation, transcription and signaling via the PI-3-K, MAPK and G-protein pathways are cellular processes commonly impacted by molecular alterations in patients with pcALCL. Recurrent events affecting cancer-associated genes included deletion of PRDM1 and TNFRSF14, gain of EZH2 and TNFRSF8, small-scale mutations in LRP1B, PDPK1 and PIK3R1 and rearrangements involving GPS2, LINC-PINT and TNK1. Consistent with the genomic data, transcriptome analysis uncovered upregulation of signal transduction routes associated with the PI-3-K, MAPK and G-protein pathways (e.g., ERK, phospholipase C, AKT). Our molecular findings suggest that inhibition of proliferation-promoting pathways altered in pcALCL (particularly PI-3-K/AKT signaling) should be explored as potential alternative therapy for patients with this lymphoma, especially, for cases that do not respond to first-line skin-directed therapies or with extracutaneous disease.


Assuntos
Linfoma Anaplásico de Células Grandes , Linfoma Anaplásico Cutâneo Primário de Células Grandes , Transtornos Linfoproliferativos , Neoplasias Cutâneas , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Proteínas Fetais , Humanos , Antígeno Ki-1 , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Transtornos Linfoproliferativos/patologia , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Cutâneas/metabolismo
5.
Genes Chromosomes Cancer ; 59(5): 295-308, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31846142

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive hematological malignancy with a poorly understood pathobiology and no effective therapeutic options. Despite a few recurrent genetic defects (eg, single nucleotide changes, indels, large chromosomal aberrations) have been identified in BPDCN, none are disease-specific, and more importantly, none explain its genesis or clinical behavior. In this study, we performed the first high resolution whole-genome analysis of BPDCN with a special focus on structural genomic alterations by using whole-genome sequencing and RNA sequencing. Our study, the first to characterize the landscape of genomic rearrangements and copy number alterations of BPDCN at nucleotide-level resolution, revealed that IKZF1, a gene encoding a transcription factor required for the differentiation of plasmacytoid dendritic cell precursors, is focally inactivated through recurrent structural alterations in this neoplasm. In concordance with the genomic data, transcriptome analysis revealed that conserved IKZF1 target genes display a loss-of-IKZF1 expression pattern. Furthermore, up-regulation of cellular processes responsible for cell-cell and cell-ECM interactions, which is a hallmark of IKZF1 deficiency, was prominent in BPDCN. Our findings suggest that IKZF1 inactivation plays a central role in the pathobiology of the disease, and consequently, therapeutic approaches directed at reestablishing the function of this gene might be beneficial for patients.


Assuntos
Células Dendríticas/patologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Fator de Transcrição Ikaros/genética , Plasmocitoma/genética , Plasmocitoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Crise Blástica/genética , Crise Blástica/metabolismo , Crise Blástica/patologia , Adesão Celular/fisiologia , Aberrações Cromossômicas , Bases de Dados Genéticas , Células Dendríticas/metabolismo , Feminino , Neoplasias Hematológicas/metabolismo , Humanos , Fator de Transcrição Ikaros/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Plasmocitoma/metabolismo , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma/métodos
6.
Genes Chromosomes Cancer ; 57(12): 653-664, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30144205

RESUMO

Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma (CTCL). Causative genetic alterations in MF are unknown. The low recurrence of pathogenic small-scale mutations (ie, nucleotide substitutions, indels) in the disease, calls for the study of additional aspects of MF genetics. Here, we investigated structural genomic alterations in tumor-stage MF by integrating whole-genome sequencing and RNA-sequencing. Multiple genes with roles in cell physiology (n = 113) and metabolism (n = 92) were found to be impacted by genomic rearrangements, including 47 genes currently implicated in cancer. Fusion transcripts involving genes of interest such as DOT1L, KDM6A, LIFR, TP53, and TP63 were also observed. Additionally, we identified recurrent deletions of genes involved in cell cycle control, chromatin regulation, the JAK-STAT pathway, and the PI-3-K pathway. Remarkably, many of these deletions result from genomic rearrangements. Deletion of tumor suppressors HNRNPK and SOCS1 were the most frequent genetic alterations in MF after deletion of CDKN2A. Notably, SOCS1 deletion could be detected in early-stage MF. In agreement with the observed genomic alterations, transcriptome analysis revealed up-regulation of the cell cycle, JAK-STAT, PI-3-K and developmental pathways. Our results position inactivation of HNRNPK and SOCS1 as potential driver events in MF development.


Assuntos
Deleção de Genes , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Sistema de Sinalização das MAP Quinases , Micose Fungoide/genética , Neoplasias Cutâneas/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Aneuploidia , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Rearranjo Gênico , Humanos , Janus Quinases/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/genética , Micose Fungoide/enzimologia , Polimorfismo de Nucleotídeo Único , RNA Neoplásico , Análise de Sequência de RNA , Neoplasias Cutâneas/enzimologia , Sequenciamento Completo do Genoma
7.
Semin Cutan Med Surg ; 37(1): 81-86, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29719024

RESUMO

Cutaneous T-cell lymphoma (CTCL) is a group of malignancies derived from skin-homing T cells. Mycosis fungoides (MF) and Sézary syndrome (SS) are the most common CTCL variants. In recent years, the genetic landscape of SS/MF has been characterized using genome-wide nextgeneration sequencing approaches. These studies have revealed that genes subjected to oncogenic mutations take part in cell cycle regulation, chromatin modification, Janus kinase (JAK)-signal transducer and activator of transcription protein (STAT) signaling, T-cell receptor (TCR)/ nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, and microtubule associated protein kinase (MAPK) signaling, which suggests that deregulation of these cellular processes underlies lymphomagenesis. These studies provide the groundwork for functional and clinical studies that will lead to better risk assessment and more effective therapeutic approach in CTCL patients.


Assuntos
Linfoma Cutâneo de Células T/genética , Neoplasias Cutâneas/genética , Humanos
8.
Exp Dermatol ; 27(10): 1172-1175, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28987003

RESUMO

We studied Lgr6+ stem cells in experimental UV carcinogenesis in hairless mice. For further characterization through RNA-seq, these stem cells were isolated by FACS from transgenic hairless mice bearing an EGFP-Ires-CreERT2 reporter cassette inserted into exon 1 of the Lgr6 gene (purity confirmed by human ERT2 expression). Between Lgr6/EGFP+ and Lgr6/EGFP- basal cells (Tg/wt), 682 RNAs were differentially expressed, indicating stemness and expression of cancer-related pathways in Lgr6/EGFP+ cells. We discovered that suspected "Lgr6 null" mice (Tg/Tg) expressed RNA of an Lgr6 isoform (delta-Lgr6, lacking 74 N-terminal aa) which could be functional and explain the lack of a phenotype.


Assuntos
Receptores Acoplados a Proteínas G/genética , Células-Tronco , Transcriptoma , Animais , Carcinogênese/genética , Carcinogênese/efeitos da radiação , Feminino , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Transgênicos , Isoformas de Proteínas , Análise de Sequência de RNA , Raios Ultravioleta
9.
Oncotarget ; 8(24): 39627-39639, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28489605

RESUMO

Sézary syndrome (SS) is an aggressive, leukemic cutaneous T-cell lymphoma variant. Molecular pathogenesis of SS is still unclear despite many studies on genetic alterations, gene expression and epigenetic regulations. Through whole genome and transcriptome next generation sequencing nine Sézary syndrome patients were analyzed in terms of copy number variations and rearrangements affecting gene expression. Recurrent copy number variations were detected within 8q (MYC, TOX), 17p (TP53, NCOR1), 10q (PTEN, FAS), 2p (DNMT3A), 11q (USP28), 9p (CAAP1), but no recurrent rearrangements were identified. However, expression of five genes involved in rearrangements (TMEM244, EHD1, MTMR2, RNF123 and TOX) was altered in all patients. Fifteen rearrangements detected in Sézary syndrome patients and SeAx resulted in an expression of new fusion transcripts, nine of them were in frame (EHD1-CAPN12, TMEM66-BAIAP2, MBD4-PTPRC, PTPRC-CPN2, MYB-MBNL1, TFG-GPR128, MAP4K3-FIGLA, DCP1A-CCL27, MBNL1-KIAA2018) and five resulted in ectopic expression of fragments of genes not expressed in normal T-cells (BAIAP2, CPN2, GPR128, CAPN12, FIGLA). Our results not only underscored the genomic complexity of the Sézary cancer cell genome but also showed an unpreceded large variety of novel gene rearrangements resulting in fusions transcripts and ectopically expressed genes.


Assuntos
Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico , Proteínas de Fusão Oncogênica/genética , Síndrome de Sézary/genética , Neoplasias Cutâneas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Cromossomos Humanos , Variações do Número de Cópias de DNA , Feminino , Seguimentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Síndrome de Sézary/patologia , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA