Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Exp Parasitol ; 262: 108771, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723847

RESUMO

Toxoplasmosis affects about one-third of the world's population. The disease treatment methods pose several side effects and do not efficiently eliminate the parasite, making the search for new therapeutic approaches necessary. We aimed to assess the anti-Toxoplasma gondii activity of four Copaifera oleoresins (ORs) and two isolated diterpene acids, named ent-kaurenoic and ent-polyalthic acid. We used HeLa cells as an experimental model of toxoplasmosis. Uninfected and infected HeLa cells were submitted to the treatments, and the parasite intracellular proliferation, cytokine levels and ROS production were measured. Also, tachyzoites were pre-treated and the parasite invasion was determined. Finally, an in silico analysis was performed to identify potential parasite targets. Our data show that the non-cytotoxic concentrations of ORs and diterpene acids controlled the invasion and proliferation of T. gondii in HeLa cells, thus highlighting the possible direct action on parasites. In addition, some compounds tested controlled parasite proliferation in an irreversible manner. An additional and non-exclusive mechanism of action involves the modulation of host cell components, by affecting the upregulation of the IL-6. Additionally, molecular docking suggested that ent-polyalthic acid has a high affinity for the active site of the TgCDPK1 protein. Copaifera ORs have great antiparasitic activity against T. gondii, and this effect can be partially explained by the presence of the isolated compounds ent-kaurenoic and ent-polyalthic acid.

2.
IUBMB Life ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708996

RESUMO

Pancreatic cancer is one of the deadliest diseases with a poor prognosis and a five-survival rate. The STAT3 pathway is hyperactivated which contributes to the sustained proliferative signals in pancreatic cancer cells. We have isolated kaempferide (KF), an O-methylated flavonol, from the green propolis of Mimosa tenuiflora and examined its effect on two forms of cell death namely, apoptosis and paraptosis. KF significantly increased the cleavage of caspase-3 and PARP. It also downmodulated the expression of Alix (an intracellular inhibitor of paraptosis) and increased the expression of CHOP and ATF4 (transcription factors that promote paraptosis) indicating that KF promotes apoptosis as well as paraptosis. KF also increased intracellular reactive oxygen species (ROS) suggesting the perturbance of the redox state. N-acetylcysteine reverted the apoptosis- and paraptosis-inducing effects of KF. Some ROS inducers are known to suppress the STAT3 pathway and investigation revealed that KF downmodulates STAT3 and its upstream kinases (JAK1, JAK2, and Src). Additionally, KF also elevated the expression of SHP-1, a tyrosine phosphatase which is involved in the negative modulation of the STAT3 pathway. Knockdown of SHP-1 prevented KF-driven STAT3 inhibition. Altogether, KF has been identified as a promoter of apoptosis and paraptosis in pancreatic cancer cells through the elevation of ROS generation and SHP-1 expression.

3.
Planta Med ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749480

RESUMO

Copaifera duckei oleoresin is a plant product extensively used by the Brazilian population for multiple purposes, such as medicinal and cosmetic. Despite its ethnopharmacological relevance, there is no pharmacokinetic data on this important medicinal plant. Due to this, we determined the pharmacokinetic profile of the major non-volatile compounds of Copaifera duckei oleoresin. The diterpenes ent-polyalthic acid and dihydro-ent-agathic acid correspond to approximately 40% of the total oleoresin. Quantification was performed using an LC-MS/MS and the validated analytical method showed to be precise, accurate, robust, reliable, and linear between 0.57 and 114.74 µg/mL plasma and 0.09 to 18.85 µg/mL plasma, respectively, for ent-polyalthic acid and dihydro-ent-agathic acid, making it suitable for application in preclinical pharmacokinetic studies. Wistar rats received a single 200 mg/kg oral dose (gavage) of Copaifera duckei oleoresin, and blood was collected through their caudal vein for 48 h. Population pharmacokinetics analysis of ent-polyalthic and dihydro-ent-agathic acids in rats was evaluated using nonlinear mixed-effects modeling conducted in NONMEN software. The pharmacokinetic parameters of ent-polyalthic acid were absorption constant rate (Ka) = 0.47 h-1, central and peripherial apparent volume of distribution (Vc/F and Vp/F) = 0.04 L and 2.48 L, apparent clearance (CL/F) = 0.15 L/h, and elimination half-life (t1/2) = 11.60 h; and of dihydro-ent-agathic acid were Ka = 0.28 h-1, Vc/F and Vp/F = 0.01 L and 0.18 L, CL/F = 0.04 L/h and t1/2 = 3.49 h. CL/F, Vc/F and Vp/F of ent- polyalthic acid are approximately 3.75, 4.00 and, 13.78 times fold the dihydro- ent-agathic ones.

4.
Planta Med ; 90(6): 454-468, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599606

RESUMO

Some in vitro and in vivo evidence is consistent with the cardiovascular beneficial activity of propolis. As the single actors responsible for this effect have never been identified, an in-depth investigation of flavonoids isolated from the green propolis of the Caatinga Mimosa tenuiflora was performed and their mechanism of action was described. A comprehensive electrophysiology, functional, and molecular docking approach was applied. Most flavanones and flavones were effective CaV1.2 channel blockers with a potency order of (2S)-sakuranetin > eriodictyol-7,3'-methyl ether > quercetin 3-methyl ether > 5,4'-dihydroxy-6,7-dimethoxyflavanone > santin > axillarin > penduletin > kumatakenin, ermanin and viscosine being weak or modest stimulators. Except for eriodictyol 5-O-methyl ether, all the flavonoids were also effective spasmolytic agents of vascular rings, kumatakenin and viscosine also showing an endothelium-dependent activity. (2S)-Sakuranetin also stimulated KCa1.1 channels both in single myocytes and vascular rings. In silico analysis provided interesting insights into the mode of action of (2S)-sakuranetin within both CaV1.2 and KCa1.1 channels. The green propolis of the Caatinga Mimosa tenuiflora is a valuable source of multi-target vasoactive flavonoids: this evidence reinforces its nutraceutical value in the cardiovascular disease prevention arena.


Assuntos
Flavonoides , Simulação de Acoplamento Molecular , Própole , Vasodilatadores , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/química , Vasodilatadores/farmacologia , Vasodilatadores/isolamento & purificação , Vasodilatadores/química , Animais , Própole/química , Própole/farmacologia , Mimosa/química , Masculino , Ratos , Fitoalexinas
5.
Fitoterapia ; 175: 105975, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38685509

RESUMO

Baccharin is one of the major compounds found in Brazilian green propolis and its botanical source, Baccharis dracunculifolia. Considering the biological effects of propolis and B. dracunculifolia, this study aims to evaluate the analgesic and anti-inflammatory potential of baccharin. The neurodepressor potential was performed by the open field test, analgesia by mechanical stimulation with Dynamic Plantar Aesthesiometer, and by thermal stimulation with Hargreaves apparatus. In addition, the anti-inflammatory potential was achieved by the paw edema assay, histopathological evaluation, and NF-kB expression. Doses of 2.5, 5, and 10 mg/kg of baccharin were evaluated. After euthanasia, plantar tissue was collected and prepared for histology. As a result, analgesic activity was observed at a dose of 10 mg/kg of baccharin in thermal stimulation under an inflammatory process and anti-inflammatory potential at a dose of 5 mg/kg of baccharin from the second hour in the paw edema test. A decrease in cellular infiltrate and down-modulation of NF-kB, besides the reduction of edema in the histopathology was observed. There was no evidence of kidney and liver toxicity and neurodepressive potential at the doses tested. Thus, baccharin has a promising anti-inflammatory effect possibly associated with antiedematogenic activity by inhibiting mediators such as prostaglandins, inhibiting the migration of polymorphonuclear cells, and modulating NF-kB expression.

6.
Eur J Pharmacol ; 967: 176400, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331336

RESUMO

In the search for novel, bi-functional compounds acting as CaV1.2 channel blockers and K+ channel stimulators, which represent an effective therapy for hypertension, 3,3'-O-dimethylquercetin was isolated for the first time from Brazilian Caatinga green propolis. Its effects were investigated through electrophysiological, functional, and computational approaches. In rat tail artery myocytes, 3,3'-O-dimethylquercetin blocked Ba2+ currents through CaV1.2 channels (IBa1.2) in a concentration-dependent manner, with the inhibition being reversed upon washout. The compound also shifted the voltage dependence of the steady-state inactivation curve to more negative potentials without affecting the slope of the inactivation and activation curves. Furthermore, the flavonoid stimulated KCa1.1 channel currents (IKCa1.1). In silico simulations provided additional evidence for the binding of 3,3'-O-dimethylquercetin to KCa1.1 and CaV1.2 channels and elucidated its mechanism of action. In depolarized rat tail artery rings, the flavonoid induced a concentration-dependent relaxation. Moreover, in rat aorta rings its antispasmodic effect was inversely related to the transmembrane K+ gradient. In conclusion, 3,3'-O-dimethylquercetin demonstrates effective in vitro vasodilatory properties, encouraging the exploration of its scaffold to develop novel derivatives for potential use in the treatment of hypertension.


Assuntos
Mimosa , Própole , Ratos , Animais , Vasodilatadores/farmacologia , Vasodilatadores/metabolismo , Mimosa/metabolismo , Própole/farmacologia , Músculo Liso Vascular , Miócitos de Músculo Liso , Flavonoides/farmacologia , Canais de Cálcio Tipo L/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38270618

RESUMO

Melanoma, an aggressive and potentially fatal skin cancer, is constrained by immunosuppression, resistance, and high toxicity in its treatment. Consequently, there is an urgent need for innovative antineoplastic agents. Therefore, this study investigated the antimelanoma potential of guttiferone E (GE). In an allogeneic murine B16 melanoma model, GE was administered subcutaneously and intraperitoneally. Antitumor evaluation included tumor volume/weight measurements and histopathological and immunohistochemical analysis. Furthermore, the toxicity of the treatments was evaluated through body/organ weights, biochemical parameters, and genotoxicity. Subcutaneous administration of 20 mg/kg of GE resulted in a significant reduction in both tumor volume and weight, effectively suppressing melanoma cell proliferation as evidenced by a decrease in mitotic figures. The tumor growth inhibition rate was equivalent to 54%. This treatment upregulated cleaved caspase-3, indicating apoptosis induction. On the other hand, intraperitoneal administration of GE showed no antimelanoma effect. Remarkably, GE treatments exhibited no toxicity, evidenced by non-significant differences in body weight gain, as well as organ weight, biochemical parameters of nephrotoxicity and hepatotoxicity, and genotoxic damage. This study revealed, for the first time, the efficacy of subcutaneous administration of GE in reducing melanoma, in the absence of toxicity. Furthermore, it was observed that the apoptotic signaling pathway is involved in the antimelanoma property of GE. These findings offer valuable insights for further exploring GE's therapeutic applications in melanoma treatment.

8.
Fundam Clin Pharmacol ; 38(2): 252-261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37735998

RESUMO

BACKGROUND: Kaurenol, a diterpene alcohol found in Copaifera langsdorffii Desf. (known as "copaiba"), is historically used in traditional medicine for inflammatory conditions. OBJECTIVES: This study aims to comprehensively assess the potential anti-inflammatory and antinociceptive properties of kaurenol. METHODS: To this end, the following experiments were conducted to evaluated toxicity: locomotor performance and acute toxicity; nociception: acetic acid-induced writhing and formalin-induced antinociception; and anti-inflammatory activity: carrageenan and dextran-induced paw edema at 10, 20, and 40 mg/kg, and measurement of nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) in macrophages at 1, 3, and 9 µg/ml. RESULTS: Kaurenol did not show significant locomotor changes, acute toxicity, and central analgesic activity in the first phase of formalin test at dosages tested. Kaurenol showed 53%, 64%, 64%, and 58% of inhibition in the acetic acid-induced writhing, second phase of formalin test, carrageenan and dextran-induced paw edema, respectively. CONCLUSION: The anti-inflammatory activity was associated with the regulation of NO release and probably with the regulation of mediators, such as serotonin and prostaglandin in vascular permeability, as well as by being associated with the regulation of IL-6 and IL-10. Kaurenol display anti-inflammatory activity but has no analgesic activity.


Assuntos
Diterpenos , Interleucina-10 , Humanos , Carragenina , Interleucina-6 , Dextranos/efeitos adversos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Analgésicos/toxicidade , Diterpenos/efeitos adversos , Extratos Vegetais/farmacologia , Ácido Acético/efeitos adversos , Edema/induzido quimicamente , Edema/tratamento farmacológico
9.
Nat Prod Res ; : 1-5, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37915254

RESUMO

Propolis is a natural product widely used in folk medicine. Among its various applications, its antiparasitic properties stand out. Due to its great biodiversity, Brazil is a major producer of several types of propolis. This study proposes to evaluate the leishmanicidal properties of the hydroalcoholic extract of propolis collected in the southern region of Brazil (Brown propolis - HEBP) and its main isolated compounds: abietic acid (1), 13-epi-cupressic acid (2), 13-epi-torulosol (3), dehydroabietic acid (4), cis-communic acid (5) and ent-agatic acid (6). In general, the diterpenes did not show activity against the promastigotes of Leishmania (Leishmania) amazonensis at the evaluated concentrations. However, the HEBP was very active with an inhibition concentration of 50% at 8.32 µg/mL. Moreover, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) assays showed morphological and structural alterations in promastigote forms of L. (L.) amazonensis when incubated with HEBP.

10.
Molecules ; 28(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894606

RESUMO

The demand for organic and functional food continues to increase yearly. Among the available functional foods, propolis is a bee product that has various beneficial properties, including antimicrobial, antioxidant, and anti-inflammatory activities. However, it generally is only available in ethanol solution, which has poor bioavailability, as it is relatively insoluble in water. The use of such ethanol extracts is often objectionable because of the alcohol content and because they have a strong and striking taste. Development of alternatives that can efficiently and safely increase solubility in water, and that meet organic production specifications, has been a challenge. To address these concerns, microcapsules were developed using spray-dryer technology from an emulsion based on EPP-AF® propolis and gum arabic (i-CAPS). These propolis-loaded microcapsules were characterized using FT-IR, SEM, TGA, HPLC, and spectrophotometric techniques, along with determination of antimicrobial, antioxidant, antitumor, anti-inflammatory, and antihypercholesterolemic activities, as well as permeability in in vitro models. The production system resulted in microcapsules with a spherical shape and an encapsulation efficiency of 93.7 ± 0.7%. They had IC50s of 2.654 ± 0.062 and 7.342 ± 0.058 µg/mL by FRAP and DPPH antioxidant methods, respectively. The EPP-AF® i-CAPS also had superior antimicrobial activity against Gram-positive bacteria. Antitumor activity was calculated based on the concentration that inhibited 50% of growth of AGS, Caco-2, and MCF-7 cell strains, giving results of 154.0 ± 1.0, 117 ± 1.0, and 271.0 ± 25 µg/mL, respectively. The microcapsule presentation reduced the permeation of cholesterol by 53.7%, demonstrating antihypercholesterolemic activity, and it improved the permeability of p-coumaric acid and artepillin C. The IC50 for NO production in RAW 264.7 cells was 59.0 ± 0.1 µg/mL. These findings demonstrate the potential of this new propolis product as a food and pharmaceutical ingredient, though additional studies are recommended to validate the safety of proposed dosages.


Assuntos
Anti-Infecciosos , Própole , Humanos , Própole/farmacologia , Antioxidantes/farmacologia , Antioxidantes/análise , Cápsulas , Espectroscopia de Infravermelho com Transformada de Fourier , Células CACO-2 , Anti-Infecciosos/farmacologia , Etanol , Água , Anti-Inflamatórios/farmacologia
11.
Antibiotics (Basel) ; 12(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37508298

RESUMO

Polyalthic acid (PA) is a diterpene found in copaiba oil. As a continuation of our work with PA, we synthesized PA analogs and investigated their antibacterial effects on preformed biofilms of Staphylococcus epidermidis and determined the minimal inhibitory concentration (MIC) of the best analogs against planktonic bacterial cells. There was no difference in activity between the amides 2a and 2b and their corresponding amines 3a and 3b regarding their ability to eradicate biofilm. PA analogs 2a and 3a were able to significantly eradicate the preformed biofilm of S. epidermidis and were active against all the Gram-positive bacteria tested (Enterococcus faecalis, Enterococcus faecium, S. epidermidis, Staphylococcus aureus), with different MIC depending on the microorganism. Therefore, PA analogs 2a and 3a are of interest for further in vitro and in vivo testing to develop formulations for antibiotic drugs against Gram-positive bacteria.

12.
Molecules ; 28(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37110745

RESUMO

The technologies used to produce the different dosage forms of propolis can selectively affect the original propolis compounds and their biological activities. The most common type of propolis extract is hydroethanolic. However, there is considerable demand for ethanol-free propolis presentations, including stable powder forms. Three propolis extract formulations were developed and investigated for chemical composition and antioxidant and antimicrobial activity: polar propolis fraction (PPF), soluble propolis dry extract (PSDE), and microencapsulated propolis extract (MPE). The different technologies used to produce the extracts affected their physical appearance, chemical profile, and biological activity. PPF was found to contain mainly caffeic and p-Coumaric acid, while PSDE and MPE showed a chemical fingerprint closer to the original green propolis hydroalcoholic extract used. MPE, a fine powder (40% propolis in gum Arabic), was readily dispersible in water, and had less intense flavor, taste, and color than PSDE. PSDE, a fine powder (80% propolis) in maltodextrin as a carrier, was perfectly water-soluble and could be used in liquid formulations; it is transparent and has a strong bitter taste. PPF, a purified solid with large amounts of caffeic and p-Coumaric acids, had the highest antioxidant and antimicrobial activity, and therefore merits further study. PSDE and MPE had antioxidant and antimicrobial properties and could be used in products tailored to specific needs.


Assuntos
Anti-Infecciosos , Própole , Antioxidantes/química , Própole/química , Pós , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Água
13.
Exp Parasitol ; 250: 108534, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37100271

RESUMO

Due to the lack of efficient antiparasitic therapy and vaccines, as well as emerging resistance strains, congenital toxoplasmosis is still a public health issue worldwide. The present study aimed to assess the effects of an oleoresin obtained from the species Copaifera trapezifolia Hayne (CTO), and an isolated molecule found in the CTO, ent-polyalthic acid (ent-15,16-epoxy-8(17),13(16),14-labdatrien-19-oic acid) (named as PA), against T. gondii infection. We used human villous explants as an experimental model of human maternal-fetal interface. Uninfected and infected villous explants were exposed to the treatments; the parasite intracellular proliferation and the cytokine levels were measured. Also, T. gondii tachyzoites were pre-treated and the parasite proliferation was determined. Our findings showed that CTO and PA reduced efficiently the parasite growth with an irreversible action, but without causing toxicity to the villi. Also, treatments reduced the levels of IL-6, IL-8, MIF and TNF by villi, what configures a valuable treatment option for the maintenance of a pregnancy in an infectious context. In addition to a possible direct effect on parasites, our data suggest an alternative mechanism by which CTO and PA alter the villous explants environment and then impair parasite growth, since the pre-treatment of villi resulted in lower parasitic infection. Here, we highlighted PA as an interesting tool for the design of new anti-T. gondii compounds.


Assuntos
Fabaceae , Toxoplasma , Humanos , Gravidez , Feminino , Extratos Vegetais/farmacologia
14.
Fundam Clin Pharmacol ; 37(5): 886-899, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37038052

RESUMO

Propolis is a natural resinous product collected from different parts of plants by bees and mixed with their salivary secretions. The occurrence of more than 180 different chemotypes has flavonoids, phenolic acids, esters, and phenolic aldehydes, as well as balsamic resins, beeswax, pollen, and essential and aromatic oils, among others. Its biological potential documented throughout the world justifies the need, from time to time, to organize reviews on the subject, with the intention of gathering and informing about the update on propolis. In this review (CRD42020212971), phytochemical advances, in vitro, in vivo, and clinical biological assays of pharmacological interest are showcased. The focus of this work is to present propolis clinical safety assays, antitumor, analgesic, antioxidant, anti-inflammatory, and antimicrobial activities. This literature review highlights propolis' promising biological activity, as it also suggests that studies associating propolis with nanotechnology should be further explored for enhanced bioprocessing applications.


Assuntos
Própole , Própole/farmacologia , Resinas Vegetais , Antioxidantes/farmacologia , Alimentos , Flavonoides
15.
Front Cell Infect Microbiol ; 13: 1113896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860986

RESUMO

The conventional treatment of congenital toxoplasmosis is mainly based on the combination of sulfadiazine and pyrimethamine. However, therapy with these drugs is associated with severe side effects and resistance, requiring the study of new therapeutic strategies. There are currently many studies with natural products, including Copaifera oleoresin, showing actions against some pathogens, as Trypanosoma cruzi and Leishmania. In the present study, we investigated the effects of the leaf hydroalcoholic extract and oleoresin from Copaifera multijuga against Toxoplasma gondii in human villous (BeWo) and extravillous (HTR8/SVneo) trophoblast cells, as well as in human villous explants from third-trimester pregnancy. For this purpose, both cells and villous explants were infected or not with T. gondii, treated with hydroalcoholic extract or oleoresin from C. multijuga and analyzed for toxicity, parasite proliferation, cytokine and ROS production. In parallel, both cells were infected by tachyzoites pretreated with hydroalcoholic extract or oleoresin, and adhesion, invasion and replication of the parasite were observed. Our results showed that the extract and oleoresin did not trigger toxicity in small concentrations and were able to reduce the T. gondii intracellular proliferation in cells previously infected. Also, the hydroalcoholic extract and oleoresin demonstrated an irreversible antiparasitic action in BeWo and HTR8/SVneo cells. Next, adhesion, invasion and replication of T. gondii were dampened when BeWo or HTR8/SVneo cells were infected with pretreated tachyzoites. Finally, infected and treated BeWo cells upregulated IL-6 and downmodulated IL-8, while HTR8/SVneo cells did not change significantly these cytokines when infected and treated. Finally, both the extract and oleoresin reduced the T. gondii proliferation in human explants, and no significant changes were observed in relation to cytokine production. Thus, compounds from C. multijuga presented different antiparasitic activities that were dependent on the experimental model, being the direct action on tachyzoites a common mechanism operating in both cells and villi. Considering all these parameters, the hydroalcoholic extract and oleoresin from C. multijuga can be a target for the establishment of new therapeutic strategy for congenital toxoplasmosis.


Assuntos
Fabaceae , Toxoplasmose Congênita , Gravidez , Humanos , Feminino , Trofoblastos , Placenta , Terceiro Trimestre da Gravidez , Extratos Vegetais/farmacologia , Antiparasitários , Citocinas
16.
Rev Bras Farmacogn ; 33(2): 288-299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908300

RESUMO

Brazil is one of the largest propolis producers in the world. Propolis is produced by bees from plant exudates and tissues, leading to many variations in the types of propolis. Generally, Brazilian propolis types are green, brown, and red. Despite not being the main research focus as the green and red propolis, brown propolis is the second most produced propolis type in Brazil and has tremendous economic and medicinal importance. Propolis has drawn attention with the rise in the search for healthier lifestyles, functional foods, biocosmetics, and natural products as therapeutic sources. This review covers the main chemical constituents identified in different types of Brazilian brown propolis, and their botanical sources, chemistry, and biological activities. The economic aspect of brown propolis is also presented. There are many gaps to be filled for brown propolis regarding the development of analytical methods, and quality control to allow its standardization, limiting its applicability in the food and pharmaceutical industries. Future perspectives regarding brown propolis research were discussed, especially biological activities, to support the medicinal uses of different types of brown propolis. Supplementary Information: The online version contains supplementary material available at 10.1007/s43450-023-00374-x.

17.
Biomed Chromatogr ; 37(8): e5634, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36977284

RESUMO

Propolis is a natural product of great economic and pharmacological importance. The flora surrounding the bee communities is a determining factor in the composition of propolis and therefore in its biological and medicinal properties. Brown propolis is one of the most important types of propolis in Brazil, produced in the southeastern region. The ethanolic extract of a brown propolis sample from Minas Gerais state was chemically characterized for the subsequent development of a RP-HPLC method, validated according to the standards of regulatory agencies. The leishmanicidal activity of this extract was assessed. The brown propolis was characterized by the presence of chemical markers reported on green propolis such as ferulic acid, coumaric acid, caffeic acid, cinnamic acid, baccharin, artepillin and drupanin, indicating a probable origin on Baccharis dracunculifolia. The developed method agreed with the parameters established by the validation guidelines, then proved to be reliable for the analysis of this type of propolis. The brown propolis displayed significant activity against Leishmania amazonensis with IC50 values of 1.8 and 2.4 µg/ml against the promastigote and amastigote forms, respectively. The studied propolis exhibited promising evidence for use as a natural source against L. amazonensis.


Assuntos
Própole , Própole/farmacologia , Própole/química , Brasil , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Padrões de Referência
18.
Nat Prod Res ; 37(24): 4210-4220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36799539

RESUMO

p-Coumaric acid is derived from cinnamic acid and is one of the major compounds in the Brazilian green propolis extract. Studies have shown that both p-coumaric acid and cinnamic acid have promising antiproliferative effects. In this context, aiming to increase the complexity of these active natural products and their activities, we performed coupling reactions with propargylamine and benzylamine, as well as with threonine, phenylalanine and lysine amino acids, aiming to enhance their antiproliferative effects towards the hormone-dependent breast cancer MCF-7 cells. Overall, the p-coumaric acid coupling with L-threonine amino acid (compound 15) had the best selectivity index (SI = 5.1), with half-maximal inhibitory concentration of 39.6 ± 1 µM, showing a high selectivity against hormone-dependent breast cancer cell lines MCF-7 and low cytotoxicity against the normal breast cell lines MCF-10A. Thus, this new natural product derivative may represent a prototype for the future development of antiproliferative agents, especially against hormone-dependent breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Ácidos Cumáricos/farmacologia , Células MCF-7 , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Hormônios/farmacologia , Hormônios/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral
19.
Food Funct ; 14(4): 2022-2033, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36723264

RESUMO

Green propolis produced by Apis melífera bees, having Baccharis dracunculifolia D.C. (Asteraceae) as the primary botanical source, has been used in traditional medicine to treat numerous disorders. However, studies evaluating propolis' potential in treating cardiovascular diseases via its effects on cholesterol metabolism are lacking. Therefore, this study investigated the effects of green propolis extracts on lipid metabolism in hypercholesterolemic guinea pigs. Chemical characterization of ethanolic extracts of green propolis samples was undertaken using HPLC. The in vitro characterization included an evaluation of the antioxidant capacity of the hydroalcoholic extract of green propolis (DPPH and FRAP assays) and its ability to act as an inhibitor of the HMG-CoA reductase enzyme. In vivo, we investigated the effect of the hydroalcoholic extract of green propolis on lipid metabolism in hypercholesterolemic guinea pigs. Results obtained validated previous reports of significant antioxidant activity. HPLC analysis confirmed that coumaric acid, artepillin C, and baccharin were the most common and abundant compounds in green propolis samples among the studied compounds. Furthermore, the compounds in these extracts acted as effective HMG-CoA reductase inhibitors in vitro. In vivo assays demonstrated that a hypercholesterolemic diet significantly reduced serum levels of the HDL cholesterol fraction. Simvastatin and propolis hydroalcoholic extracts promoted a significant increase in HDL cholesterol, suggesting that these extracts can improve the serum lipid profile of hypercholesterolemic guinea pigs. Results obtained in this study provide a perspective on the possible hypocholesterolemic effect of green propolis, suggesting that it can improve the serum lipid profile in hypercholesterolemic guinea pigs.


Assuntos
Própole , Cobaias , Animais , Própole/química , Brasil , HDL-Colesterol , Extratos Vegetais/farmacologia , Antioxidantes , Metabolismo dos Lipídeos , Homeostase
20.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724272

RESUMO

AIMS: The antibacterial activity of red propolis extract (RPE) and brown propolis extracts (BPE) and the synergistic effect of RPE with cefoxitin (CEFO), imipenem (IMI), and ertapenem (ERTA) was evaluated in vitro against methicillin-resistant Staphylococcus aureus (MRSA) strains. METHODS AND RESULTS: MRSA ATCC 33591, community-associated (CA-MRSA) USA300, and four clinical isolates were used. A broth microdilution assay was performed to obtain inhibitory and bactericidal concentrations of BPE, RPE, CEFO, IMI, and ERTA. RPE in combination with CEFO, IMI, and ERTA was evaluated on the formation or eradication of biofilm. The bacterial relative membrane conductivity of the strains was assessed after RPE and combinations exposition. Surface/binding computational analyzes between RPE compounds and penicillin binding protein 2a (PBP2a) were performed. BPE samples had no activity against MRSA (MICs 3.2-5 g l-1; MBCs 10-15 g l-1), so the subsequent assays were carried out only with RPE and antimicrobials. RPE exerted a bacteriostatic action (MICs 0.0156-0.125 g l-1; MBCs 0.5-2 g l-1) but the combinations with IMI and ERTA showed the highest inhibition, as observed in the time-kill curve. However, the FICI index showed synergism (≥0.5) only to RPE + IMI. This combination was the most effective in inhibiting the biofilm and showed the highest values of membrane conductivity. Computational predictions indicated that RPE constituents may interact with PBP2a. CONCLUSION: RPE and RPE + IMI exerted an antibacterial and antibiofilm activity on MRSA strains probably due to membrane/wall damage and interactions with PBP2a.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Própole , beta-Lactamas/farmacologia , Própole/farmacologia , Brasil , Sinergismo Farmacológico , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Cefoxitina/metabolismo , Cefoxitina/farmacologia , Imipenem/farmacologia , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA