Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Polymers (Basel) ; 16(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611137

RESUMO

In this work, hybrid materials within the polydimethylsiloxane-silica (PDMS-SiO2) system, synthesized via the sol-gel method, were developed and characterized for their potential to incorporate and release the bioactive compound resveratrol (RES). RES was incorporated into the materials with a high loading efficiency (>75%) using the rotary evaporator technique. This incorporation induced the amorphization of RES, resulting in enhanced solubility and in vitro release when compared to the free polyphenolic compound. The release profiles displayed pH dependence, exhibiting notably faster release at pH 5.2 compared to pH 7.4. The gradual release of RES over time demonstrated an initial time lag of approximately 4 h, being well described by the Weibull model. In vitro cytotoxicity studies were conducted on human osteosarcoma cells (MG-63), revealing a concentration-dependent decrease in cell viability for RES-loaded samples (for concentrations >50 µg mL-1).

2.
Biochimie ; 216: 99-107, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37879427

RESUMO

Cancer is a huge public health problem being one of the main causes of death globally. Specifically, melanoma is one of the most threatening cancer types due to the metastatic capacity, treatment resistance and mortality rates. It is evident the urgent need for research on new agents with pharmacological potential for cancer treatment, in order to develop new cancer therapeutic strategies and overcome drug resistance. The present work investigated the anti-tumoral potential of Chartergellus-CP1 peptide, isolated from Chartergellus communis wasp venom on human melanoma cell lines with different pigmentation degrees, namely the amelanotic cell line A375 and pigmented cell line MNT-1. Chartergellus-CP1 induced selective cytotoxicity to melanoma cell lines when compared to the lower induced cytotoxicity towards to nontumorigenic keratinocytes. Chartergellus-CP1 peptide induced apoptosis in both melanoma cell lines, cell cycle impairment in amelanotic A375 cells and intracellular ROS increase in pigmented MNT-1 cells. The amelanotic A375 cell line showed higher sensitivity to the peptide than the pigmented cell line MNT-1. From our knowledge, this is the first study reporting the cytotoxic effects of Chartergellus-CP1 on melanoma cells.


Assuntos
Antineoplásicos , Melanoma , Humanos , Melanoma/patologia , Venenos de Vespas/farmacologia , Venenos de Vespas/uso terapêutico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Apoptose
3.
Data Brief ; 51: 109673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37876742

RESUMO

Toxicological analysis of the effects of natural compounds is frequently mandated to assess their safety. In addition to more simple in vitro cellular systems, more complex biological systems can be used to evaluate toxicity. This dataset is comprised of bright-field microscopy images of chicken-embryo blood cells, a complex biological model that recapitulates several features found in human organisms, including circulation in blood stream and biodistribution to different organs. In the presented collection of blood smear images, cells were exposed to the flavonoid quercetin, and the two mutagens methyl methanesulfonate (MMS) and cadmium chloride (CdCl2). In ovo models offer a unique opportunity to investigate the effects of various substances, pathogens, or cancer treatments on developing embryos, providing valuable insights into potential risks and therapeutic strategies. In toxicology, in ovo models allow for early detection of harmful compounds and their impact on embryonic development, aiding in the assessment of environmental hazards. In immunology, these models offer a controlled system to explore the developing immune responses and the interaction between pathogens and host defenses. Additionally, in ovo models are instrumental in oncology research as they enable the study of tumor development and response to therapies in a dynamic, rapidly developing environment. Thus, these versatile models play a crucial role in advancing our understanding of complex biological processes and guiding the development of safer therapeutics and interventions. The data presented here can aid in understanding the potential toxic effects of these substances on hematopoiesis and the overall health of the developing organism. Moreover, the large dataset of blood smear images can serve as a resource for training machine learning algorithms to automatically detect and classify blood cells, provided that specific optimized conditions such as image magnification and background light are maintained for comparison. This can lead to the development of automated tools for blood cell analysis, which can be useful in research. Moreover, the data is amenable to the use as teaching and learning resource for histology and developmental biology.

4.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375852

RESUMO

Lycopene is a carotenoid with potential use in the treatment of chronic illnesses. Here, different formulations of lycopene were studied: lycopene-rich extract from red guava (LEG), purified lycopene from red guava (LPG) and a self-emulsifying drug delivery system loaded with LPG (nanoLPG). The effects of administering orally various doses of LEG to hypercholesterolemic hamsters were evaluated regarding the liver function of the animals. The cytotoxicity of LPG in Vero cells was analyzed by a crystal violet assay and by fluorescence microscopy. In addition, nanoLPG was employed in stability tests. LPG and nanoLPG were tested for their cytotoxic effect on human keratinocytes and antioxidant capacity on cells in an endothelial dysfunction model in an isolated rat aorta. Finally, the effect of different nanoLPG concentrations on the expression of immune-related genes (IL-10, TNF-α, COX-2 and IFN-γ) from peripheral blood mononuclear cells (PBMC) using real-time PCR was also analyzed. Results suggest that LEG, despite not being able to improve blood markers indicative of liver function in hypercholesterolemic hamsters, reduced hepatic degenerative changes. Additionally, LPG did not show cytotoxicity in Vero cells. In relation to nanoLPG, the effects produced by heat stress evaluated by Dynamics Light Scattering (DLS) and visually were loss of color, texture change and phase separation after 15 days without interfering with the droplet size, so the formulation proved to be efficient in stabilizing the encapsulated lycopene. Although LPG and nanoLPG showed moderate toxicity to keratinocytes, which may be related to cell lineage characteristics, both revealed potent antioxidant activity. LPG and nanoLPG showed vasoprotective effects in aortic preparations. The gene expression assay indicates that, although no significant differences were observed in the expression of IL-10 and TNF-α, the PBMCs treated with nanoLPG showed a reduction in transcriptional levels of IFN-γ and an increased expression of COX-2. Thus, the work adds evidence to the safety of the use of lycopene by humans and shows that tested formulations, mainly nanoLPG due to its stability, stand out as promising and biosafe products for the treatment of diseases that have oxidative stress and inflammation in their etiopathology.

5.
Toxicon ; 216: 148-156, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35839869

RESUMO

Breast cancer represents the most incident cancer in women. Surgery, chemotherapy, radiation therapy, and hormone therapy remain the main treatment for this type of cancer. However, increasing resistance to anti-cancer drugs through poor response for some types of breast cancer to treatments highlights the need to develop new therapeutic agents to fight the disease. In this study, we evaluated the anti-tumor potential of the Chartergellus-CP1 peptide isolated from the wasp venom of Chartergellus communis in human breast cancer cell lines MCF-7 (HR+) and MDA-MB-231 (triple-negative). Cells viability, morphology, cell cycle dynamics, reactive oxygen species (ROS) production, and apoptosis were assessed for both cell lines after exposure to Chartergellus-CP1 during 24 and 48 h. The results showed that Chartergellus-CP1 led to a significant increase of cells in the S phase in addition to a high generation of ROS (being more evident in the MCF-7 cell line) associated with apoptotic cell death. This work demonstrates, for the first time, the cytotoxic effects of Chatergellus-CP1 on human breast cancer cell lines including cell cycle profile, oxidative stress generation, and cell death mechanisms.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Peptídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Venenos de Vespas/farmacologia
6.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408947

RESUMO

Melanoma is a drug-resistant cancer, representing a serious challenge in cancer treatment. Dacarbazine (DTIC) is the standard drug in metastatic melanoma treatment, despite the poor results. Hyperthermia has been proven to potentiate chemotherapy. Hence, this work analyzed the combined action of hyperthermia and DTIC on A375 and MNT-1 cell lines. First, temperatures between 40 °C and 45 °C were tested. The effect of DTIC on cell viability was also investigated after exposures of 24, 48, and 72 h. Then, cells were exposed to 43 °C and to the respective DTIC IC10 or IC20 of each time exposure. Overall, hyperthermia reduced cell viability, however, 45 °C caused an excessive cell death (>90%). Combinational treatment revealed that hyperthermia potentiates DTIC's effect, but it is dependent on the concentration and temperature used. Also, it has different mechanisms from the treatments alone, delaying A375 cells at the G2/M phase and MNT-1 cells at the S and G2/M phases. Intracellular reactive oxygen species (ROS) levels increased after treatment with hyperthermia, but the combined treatment showed no additional differences. Also, hyperthermia highly increased the number of A375 early apoptotic cells. These results suggest that combining hyperthermia and DTIC should be more explored to improve melanoma treatment.


Assuntos
Hipertermia Induzida , Melanoma , Linhagem Celular Tumoral , Sobrevivência Celular , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Sci Rep ; 12(1): 3770, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260656

RESUMO

Upconversion nanoparticles (UCNPs) have attracted considerable attention owing to their unique photophysical properties. Their utilization in biomedical applications depends on the understanding of their transformations under physiological conditions and their potential toxicity. In this study, NaYF4:Yb,Er UCNPs, widely used for luminescence and photophysical studies, were modified with a set of four different coordinatively bound surface ligands, i.e., citrate, alendronate (AA), ethylendiamine tetra(methylene phosphonate) (EDTMP), and poly(maleic anhydride-alt-1-octadecene) (PMAO), as well as silica coatings with two different thicknesses. Subsequently, the aging-induced release of fluoride ions in water and cell culture media and their cytotoxic profile to human keratinocytes were assessed in parallel to the cytotoxic evaluation of the ligands, sodium fluoride and the lanthanide ions. The cytotoxicity studies of UCNPs with different surface modifications demonstrated the good biocompatibility of EDTMP-UCNPs and PMAO-UCNPs, which is in line with the low amount of fluoride ions released from these samples. An efficient prevention of UCNP dissolution and release of cytotoxic ions, as well as low cytotoxicity was also observed for UCNPs with a sufficiently thick silica shell. Overall, our results provide new insights into the understanding of the contribution of surface chemistry to the stability, dissolution behavior, and cytotoxicity of UCNPs. Altogether, the results obtained are highly important for future applications of UCNPs in the life sciences and bioimaging studies.


Assuntos
Nanopartículas , Ítrio , Humanos , Fluoretos/química , Ligantes , Nanopartículas/química , Dióxido de Silício , Solubilidade , Ítrio/química
8.
Nat Prod Res ; 36(18): 4799-4803, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34875942

RESUMO

Fridericia chica (Bonpl.) L.G. Lohmann (synonym Arrabidaea chica Verlot) is widely used in Brazilian folk medicine. Considering overcoming pitfalls of scaling up production of plant extracts, herein the effects of N2 atmosphere for extract spray-drying process is reported. Samples were monitored by in vitro antioxidant activity and microbiological evaluation. The drying atmosphere influenced 3-deoxyanthocyanines content when using air as atomizing gas, decreasing carajurin (37.5%) content with concomitant increase in luteolin yield (24.1%). Both drying processes preserved the pharmacological activity. In the cell migration test with HaCaT cells, the extract dried under air flow (5 µg/mL) promoted wound closure by 78% (12 hours) whereas the extract dried using N2 flow promoted 49% (12 hours), with 98% closure (12 hours) for the positive control. The antimicrobial evaluation for Staphylococcus aureus did not differ within drying atmospheres, with MIC (minimum inhibitory concentration) at 0.39 mg/mL. Therefore, the drying process reported herein did not interfere with the biological activity's outcome.


Assuntos
Bignoniaceae , Antioxidantes/farmacologia , Atmosfera , Extratos Vegetais/farmacologia , Cicatrização
9.
Nanomaterials (Basel) ; 11(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34835704

RESUMO

Magnetic nanoparticles (NP), such as magnetite, have been the subject of research for application in the biomedical field, especially in Magnetic Hyperthermia Therapy (MHT), a promising technique for cancer therapy. NP are often coated with different compounds such as natural or synthetic polymers to protect them from oxidation and enhance their colloidal electrostatic stability while maintaining their thermal efficiency. In this work, the synthesis and characterization of magnetite nanoparticles coated with fucoidan, a biopolymer with recognized biocompatibility and antitumoral activity, is reported. The potential application of NP in MHT was evaluated through the assessment of Specific Loss Power (SLP) under an electromagnetic field amplitude of 14.7 kA m-1 and at 276 kHz. For fucoidan-coated NP, it was obtained SLP values of 100 and 156 W/g, corresponding to an Intrinsic Loss Power (ILP) of 1.7 and 2.6 nHm2kg-1, respectively. These values are, in general, higher than the ones reported in the literature for non-coated magnetite NP or coated with other polymers. Furthermore, in vitro assays showed that fucoidan and fucoidan-coated NP are biocompatible. The particle size (between ca. 6 to 12 nm), heating efficiency, and biocompatibility of fucoidan-coated magnetite NP meet the required criteria for MHT application.

10.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008457

RESUMO

Melanoma is the deadliest form of skin cancer, and its incidence has alarmingly increased in the last few decades, creating a need for novel treatment approaches. Thus, we evaluated the combinatorial effect of doxorubicin (DOX) and hyperthermia on A375 and MNT-1 human melanoma cell lines. Cells were treated with DOX for 24, 48, and 72 h and their viabilities were assessed. The effect of DOX IC10 and IC20 (combined at 43 °C for 30, 60, and 120 min) on cell viability was further analyzed. Interference on cell cycle dynamics, reactive oxygen species (ROS) production, and apoptosis upon treatment (with 30 min at 43 °C and DOX at the IC20 for 48 h) were analyzed by flow cytometry. Combined treatment significantly decreased cell viability, but not in all tested conditions, suggesting that the effect depends on the drug concentration and heat treatment duration. Combined treatment also mediated a G2/M phase arrest in both cell lines, as well as increasing ROS levels. Additionally, it induced early apoptosis in MNT-1 cells, while in A375 cells this effect was similar to the one caused by hyperthermia alone. These findings demonstrate that hyperthermia enhances DOX effect through cell cycle arrest, oxidative stress, and apoptotic cell death.


Assuntos
Doxorrubicina/farmacologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Hipertermia Induzida/métodos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Melanoma/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/metabolismo
11.
Mater Sci Eng C Mater Biol Appl ; 118: 111350, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33254971

RESUMO

The aim of the present study was to develop innovative patches for dermo-cosmetic applications based on dissolvable hyaluronic acid (HA) microneedles (MNs) combined with bacterial nanocellulose (BC) as the back layer. HA was employed as an active biomacromolecule, with hydrating and regenerative properties and volumizing effect, whereas BC was used as support for the incorporation of an additional bioactive molecule. Rutin, a natural antioxidant, was selected as the model bioactive compound to demonstrate the effectiveness of the system. The obtained HA-MNs arrays present homogenous and regular needles, with 200 µm in base width, 450 µm in height and 500 µm tip-to-tip distance, and with sufficient mechanical force to withstand skin insertion with a failure force higher than 0.15 N per needle. The antioxidant activity of rutin was neither affected by its incorporation in the MNs system nor by their storage at room temperature for 6 months. Preliminary in vivo studies in human volunteers unveiled their safety and cutaneous compatibility, as no significant changes in barrier function, stratum corneum hydration nor redness were detected. These results confirm the potentiality of this novel system for skin applications, e.g. cosmetics, taking advantage of the recognized properties of HA and the capacity of BC to control the release of bioactive molecules.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Hialurônico , Administração Cutânea , Humanos , Agulhas , Pele
12.
Nanomaterials (Basel) ; 10(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317206

RESUMO

Antibacterial multi-layered patches composed of an oxidized bacterial cellulose (OBC) membrane loaded with dexpanthenol (DEX) and coated with several chitosan (CH) and alginate (ALG) layers were fabricated by spin-assisted layer-by-layer (LbL) assembly. Four patches with a distinct number of layers (5, 11, 17, and 21) were prepared. These nanostructured multi-layered patches reveal a thermal stability up to 200 °C, high mechanical performance (Young's modulus ≥ 4 GPa), and good moisture-uptake capacity (240-250%). Moreover, they inhibited the growth of the skin pathogen Staphylococcus aureus (3.2-log CFU mL-1 reduction) and were non-cytotoxic to human keratinocytes (HaCaT cells). The in vitro release profile of DEX was prolonged with the increasing number of layers, and the time-dependent data imply a diffusion/swelling-controlled drug release mechanism. In addition, the in vitro wound healing assay demonstrated a good cell migration capacity, headed to a complete gap closure after 24 h. These results certify the potential of these multi-layered polysaccharides-based patches toward their application in wound healing.

13.
Carbohydr Polym ; 241: 116314, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32507191

RESUMO

The present study reports the fabrication of dissolvable microneedle (MN) patches using pullulan (PL), a water-soluble polysaccharide with excellent film-forming ability, for the transdermal administration of insulin, envisioning the non-invasive treatment of diabetes. PL MNs patches were successfully prepared by micromoulding and revealed good thermal stability (Tdmax = 294 °C) and mechanical properties (>0.15 N needle-1), penetrating skin up to 381 µm depth, as revealed by in vitro skin tests. After application into human abdominal skin in vitro, the MNs dissolved within 2 h releasing up to 87% of insulin. When stored at 4, 20 and 40 °C for 4 weeks, insulin was able to retain its secondary structure, as shown by circular dichroism spectropolarimetry. The prepared PL MNs were non-cytotoxic towards human keratinocytes, being suitable for skin application. These findings suggest that PL MNs have potential to deliver insulin transdermally, thus avoiding its subcutaneous administration.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Glucanos/química , Insulina/administração & dosagem , Agulhas , Adesivo Transdérmico , Administração Cutânea , Diabetes Mellitus/tratamento farmacológico , Células HaCaT , Humanos , Hipoglicemiantes/administração & dosagem
14.
Nanomaterials (Basel) ; 10(4)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231070

RESUMO

Nanostructured patches composed of bacterial nanocellulose (BNC), hyaluronic acid (HA) and diclofenac (DCF) were developed, envisioning the treatment of aphthous stomatitis. Freestanding patches were prepared via diffusion of aqueous solutions of HA and DCF, with different concentrations of DCF, into the wet BNC three-dimensional porous network. The resultant dual polysaccharides-based patches with a nanostructured morphology present thermal stability up to 200 °C, as well as good dynamic mechanical properties, with a storage modulus higher than 1.0 GPa. In addition, the patches are non-cytotoxic to human keratinocytes (HaCaT cells), with a cell viability of almost 100% after 24 h. The in vitro release profile of DCF from the patches was evaluated in simulated saliva, and the data refer to a diffusion- and swelling-controlled drug-release mechanism. The attained results hint at the possibility of using these dual polysaccharides-based oral mucosal patches to target aphthous stomatitis.

15.
Macromol Biosci ; 20(10): e2000195, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33405374

RESUMO

Urea, the main nitrogenous waste product of protein metabolism, is eliminated almost exclusively by the kidney, and hence, displays considerable clinical significance in the assessment of kidney disorders. The aim of this study is to prepare and investigate the potential of swellable cross-linked gelatin methacryloyl (c-GelMA) microneedles (MNs) as a platform for minimally invasive extraction of interstitial skin fluid (ISF) toward straightforward point-of-care healthcare monitoring of renal complaints, by quantification of urea. c-GelMA MNs are successfully prepared by photo-cross-linking and micromolding, faithfully replicating the master molds (387 ± 16 µm height, 200 µm base and 500 µm tip-to-tip distance). These MN patches display good mechanical properties, withstanding more than 0.15 N per needle without breaking. Ex vivo skin insertion assays reveal that the MNs penetrate up to 237 µm depth, reaching the dermis, where they should extract ISF considering a real application. In an in vitro application using an agarose skin model system, the c-GelMA MNs are able to efficiently recover urea (>98%). Additionally, these MNs exhibit noncytotoxic effects toward human keratinocytes. These findings suggest that c-GelMA MNs are promising devices for sampling ISF and offline analysis of urea, opening new avenues for simple point-of-care healthcare monitoring.


Assuntos
Líquidos Corporais/metabolismo , Gelatina/química , Metacrilatos/química , Agulhas , Pele/metabolismo , Ureia/análise , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Feminino , Células HaCaT , Humanos , Hidrogéis/química , Peso Molecular , Sefarose/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Água/química
16.
J Appl Toxicol ; 39(7): 1057-1065, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883852

RESUMO

Occupational environments are major exposure routes to Cr(VI). However, Cr(VI) may also establish in bone tissues by ingestion or through Cr containing orthopaedic prostheses that, due to wear and corrosion, may release metal particles and ions potentially affecting bone tissue. The aim of this work was to evaluate the effects of clinically relevant concentrations of Cr(VI) in human osteoblasts, by integrating genotoxic effects, evaluated by the comet assay and cytokinesis-blocked micronucleus assay (scoring the presence of micronucleus, nucleoplasmic bridges and nuclear division index), with the effects on cell cycle and cell viability. Human osteoblasts MG-63 were in vitro exposed to Cr(VI) at concentrations ranging from 0.1 to 5 µm, for 24 and 48 hours. Results pointed out to a decrease of cell viability for both time exposures in a time- and dose-dependent manner, which was related to cell cycle arrest and DNA damage. Chromosome abnormalities were also observed. Hence, these data suggest that cells arrested in the cell division with DNA damage may have followed cell death pathways, while some surviving ones still revealed DNA damage at chromosome level indicating abnormal cell division progression. In conclusion, Cr(VI) induced cytotoxic and genotoxic effects in human bone cells at concentrations that could be found in patients with metal-on-metal prostheses. In addition, the early onset of genotoxic damage induced by Cr(VI) at low concentrations after 24 hours of cell exposure alert to the relevance of periodic monitoring of patients for genotoxicity diagnosis after implantation of prostheses before clinical symptoms appear.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Cromo/toxicidade , Dano ao DNA , Poluentes Ambientais/toxicidade , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Osteoblastos/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Humanos , Testes para Micronúcleos , Osteoblastos/patologia
17.
J Toxicol Environ Health A ; 81(15): 705-717, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29913117

RESUMO

Cadmium (Cd) accumulation is known to occur predominantly in kidney and liver; however, low-level long-term exposure to Cd may also result in bone damage. Few studies have addressed Cd-induced toxicity in osteoblasts, particularly upon cell mitochondrial energy processing and putative associations with oxidative stress in bone. To assess the influence of Cd treatment on mitochondrial function and oxidative status in osteoblast cells, human MG-63 cells were treated with Cd (up to 65 µM) for 24 or 48 h. Intracellular reactive oxygen species (ROS), lipid and protein oxidation and antioxidant defense mechanisms such as total antioxidant activity (TAA) and gene expression of antioxidant enzymes were analyzed. In addition, Cd-induced effects on mitochondrial function were assessed by analyzing the activity of enzymes involved in mitochondrial respiration, membrane potential (ΔΨm), mitochondrial morphology and adenylate energy charge. Treatment with Cd increased oxidative stress, concomitantly with lipid and protein oxidation. Real-time polymerase chain reaction (qRT-PCR) analyses of antioxidant genes catalase (CAT), glutathione peroxidase 1 (GPX1), glutathione S-reductase (GSR), and superoxide dismutase (SOD1 and SOD2) exhibited a trend toward decrease in transcripts in Cd-stressed cells, particularly a downregulation of GSR. Longer treatment with Cd (48 h) resulted in energy charge states significantly below those commonly observed in living cells. Mitochondrial function was affected by ΔΨm reduction. Inhibition of mitochondrial respiratory chain enzymes and citrate synthase also occurred following Cd treatment. In conclusion, Cd induced mitochondrial dysfunction which appeared to be associated with oxidative stress in human osteoblasts.


Assuntos
Antioxidantes/metabolismo , Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/fisiologia , Osteoblastos , Oxirredução , Proteínas/metabolismo
18.
J Environ Sci (China) ; 51: 191-201, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28115130

RESUMO

The antibacterial potential of silver nanoparticles (AgNPs) resulted in their increasing incorporation into consumer, industrial and biomedical products. Therefore, human and environmental exposure to AgNPs (either as an engineered product or a contaminant) supports the emergent research on the features conferring them different toxicity profiles. In this study, 30nm AgNPs coated with citrate or poly(ethylene glycol) (PEG) were used to assess the influence of coating on the effects produced on a human hepatoma cell line (HepG2), namely in terms of viability, apoptosis, apoptotic related genes, cell cycle and cyclins gene expression. Both types of coated AgNPs decreased cell proliferation and viability with a similar toxicity profile. At the concentrations used (11 and 5µg/mL corresponding to IC50 and ~IC10 levels, respectively) the amount of cells undergoing apoptosis was not significant and the apoptotic related genes BCL2 (anti-apoptotic gene) and BAX (pro-apoptotic gene) were both downregulated. Moreover, both AgNPs affected HepG2 cell cycle progression at the higher concentration (11µg/mL) by increasing the percentage of cells in S (synthesis phase) and G2 (Gap 2 phase) phases. Considering the cell-cycle related genes, the expression of cyclin B1 and cyclin E1 genes were decreased. Thus, this work has shown that citrate- and PEG-coated AgNPs impact on HepG2 apoptotic gene expression, cell cycle dynamics and cyclin regulation in a similar way. More research is needed to determine the properties that confer AgNPs at lower toxicity, since their use has proved helpful in several industrial and biomedical contexts.


Assuntos
Antibacterianos/toxicidade , Ácido Cítrico/toxicidade , Substâncias Perigosas/toxicidade , Nanopartículas Metálicas/toxicidade , Polietilenoglicóis/toxicidade , Prata/toxicidade , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas
19.
Nanotoxicology ; 10(8): 1105-17, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27144425

RESUMO

The widespread use of silver nanoparticles (AgNPs) is accompanied by a growing concern regarding their potential risks to human health, thus calling for an increased understanding of their biological effects. The aim of this work was to systematically study the extent to which changes in cellular metabolism were dependent on the properties of AgNPs, using NMR metabolomics. Human skin keratinocytes (HaCaT cells) were exposed to citrate-coated AgNPs of 10, 30 or 60 nm diameter and to 30 nm AgNPs coated either with citrate (CIT), polyethylene glycol (PEG) or bovine serum albumin (BSA), to assess the influence of NP size and surface chemistry. Overall, CIT-coated 60 nm and PEG-coated 30 nm AgNPs had the least impact on cell viability and metabolism. The role of ionic silver and reactive oxygen species (ROS)-mediated effects was also studied, in comparison to CIT-coated 30 nm particles. At concentrations causing an equivalent decrease in cell viability, Ag(+ )ions produced a change in the metabolic profile that was remarkably similar to that seen for AgNPs, the main difference being the lesser impact on the Krebs cycle and energy metabolism. Finally, this study newly reported that while down-regulated glycolysis and disruption of energy production were common to AgNPs and H2O2, the impact on some metabolic pathways (GSH synthesis, glutaminolysis and the Krebs cycle) was independent of ROS-mediated mechanisms. In conclusion, this study shows the ability of NMR metabolomics to define subtle biochemical changes induced by AgNPs and demonstrates the potential of this approach for rapid, untargeted screening of pre-clinical toxicity of nanomaterials in general.


Assuntos
Queratinócitos/efeitos dos fármacos , Metabolômica/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Prata/química , Prata/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácido Cítrico/química , Ácido Cítrico/toxicidade , Humanos , Íons , Queratinócitos/metabolismo , Polietilenoglicóis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
20.
Arch Biochem Biophys ; 589: 53-61, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26344855

RESUMO

Due to their antimicrobial properties, silver nanoparticles (AgNPs) are increasingly incorporated into consumer goods and medical products. Their potential toxicity to human cells is however a major concern, and there is a need for improved understanding of their effects on cell metabolism and function. Here, Nuclear Magnetic Resonance (NMR) metabolomics was used to investigate the metabolic profile of human epidermis keratinocytes (HaCaT cell line) exposed for 48 h to 30 nm citrate-stabilized spherical AgNPs (10 and 40 µg/mL). Intracellular aqueous extracts, organic extracts and extracellular culture medium were analysed to provide an integrated view of the cellular metabolic response. The specific metabolite variations, highlighted through multivariate analysis and confirmed by spectral integration, suggested that HaCaT cells exposed to AgNPs displayed upregulated glutathione-based antioxidant protection, increased glutaminolysis, downregulated tricarboxylic acid (TCA) cycle activity, energy depletion and cell membrane modification. Importantly, most metabolic changes were apparent in cells exposed to a concentration of AgNPs which did not affect cell viability at significant levels, thus underlying the sensitivity of NMR metabolomics to detect early biochemical events, even in the absence of a clear cytotoxic response. It can be concluded that NMR metabolomics is an important new tool in the field of in vitro nanotoxicology.


Assuntos
Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Metabolômica , Nanopartículas Metálicas/toxicidade , Prata/química , Prata/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citratos/química , Humanos , Queratinócitos/citologia , Espectroscopia de Ressonância Magnética , Mitocôndrias/efeitos dos fármacos , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA