Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(11): 3221-3234, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36762511

RESUMO

Global change ecology nowadays embraces ever-growing large observational datasets (big-data) and complex mathematical models that track hundreds of ecological processes (big-model). The rapid advancement of the big-data-big-model has reached its bottleneck: high computational requirements prevent further development of models that need to be integrated over long time-scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. Here, we introduce a machine-learning acceleration (MLA) tool to tackle this grand challenge. We focus on the most resource-consuming step in terrestrial biosphere models (TBMs): the equilibration of biogeochemical cycles (spin-up), a prerequisite that can take up to 98% of the computational time. Through three members of the ORCHIDEE TBM family part of the IPSL Earth System Model, including versions that describe the complex interactions between nitrogen, phosphorus and carbon that do not have any analytical solution for the spin-up, we show that an unoptimized MLA reduced the computation demand by 77%-80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. Despite small biases in the MLA-derived equilibrium, the resulting impact on the predicted regional carbon balance over recent decades is minor. We expect a one-order of magnitude lower computation demand by optimizing the choices of machine learning algorithms, their settings, and balancing the trade-off between quality of MLA predictions and need for TBM simulations for training data generation and bias reduction. Our tool is agnostic to gridded models (beyond TBMs), compatible with existing spin-up acceleration procedures, and opens the door to a wide variety of future applications, with complex non-linear models benefit most from the computational efficiency.


Assuntos
Ecossistema , Modelos Teóricos , Carbono , Nitrogênio , Ciclo do Carbono
2.
Nat Commun ; 13(1): 4781, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970991

RESUMO

The observed global net land carbon sink is captured by current land models. All models agree that atmospheric CO2 and nitrogen deposition driven gains in carbon stocks are partially offset by climate and land-use and land-cover change (LULCC) losses. However, there is a lack of consensus in the partitioning of the sink between vegetation and soil, where models do not even agree on the direction of change in carbon stocks over the past 60 years. This uncertainty is driven by plant productivity, allocation, and turnover response to atmospheric CO2 (and to a smaller extent to LULCC), and the response of soil to LULCC (and to a lesser extent climate). Overall, differences in turnover explain ~70% of model spread in both vegetation and soil carbon changes. Further analysis of internal plant and soil (individual pools) cycling is needed to reduce uncertainty in the controlling processes behind the global land carbon sink.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Carbono , Dióxido de Carbono/análise , Ecossistema , Plantas , Solo , Incerteza
3.
Appl Radiat Isot ; 68(4-5): 816-20, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19822441

RESUMO

The main sources of uncertainties for grab sampling, short-term (charcoal canisters) and long term (track detectors) measurements are: systematic bias of reference equipment; random Poisson and non-Poisson errors during calibration; random Poisson and non-Poisson errors during measurements. The origins of non-Poisson random errors during calibration are different for different kinds of instrumental measurements. The main sources of uncertainties for retrospective measurements conducted by surface traps techniques can be divided in two groups: errors of surface (210)Pb ((210)Po) activity measurements and uncertainties of transfer from (210)Pb surface activity in glass objects to average radon concentration during this object exposure. It's shown that total measurement error of surface trap retrospective technique can be decreased to 35%.


Assuntos
Poluentes Radioativos do Ar/análise , Artefatos , Monitoramento de Radiação/instrumentação , Radônio/análise , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Monitoramento de Radiação/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA