RESUMO
Heme oxygenase 1 (Hmox1), the inducible form of heme degrading enzymes Hmoxs, is important for establishment and maintenance of pregnancy. A growing body of evidence suggests an association between Hmox1 and angiogenesis, including placental angiogenesis. In this study, we examined the expression of two angiogenic factors in the placentas of Hmox1 deficient mouse embryos, whose expression was found to be related to that of Hmox1. Relative protein levels and localization of Hmoxs and two angiogenic factors [Vegf and Prolactin along with their receptors, and Cd31/Pecam1] were compared in the placentas of Hmox1 wildtype and knockout mouse embryos using western blotting and immunohistochemistry along with histological analysis. The results revealed tissue disorganisation, reduced area of labyrinth and smaller nuclear size of trophoblast giant cell in the placentas of knockout embryos. The levels of Hmox2, prolactin, and Cd31/Pecam1 were found to be altered in knockout placentas, whereas Vegf and its receptors seem to be unaltered in our samples. Overall, our findings imply that Hmox2 is unlikely to compensate for Hmox1 deficiency in knockout placentas, and altered levels of prolactin and Cd31/Pecam1 hint towards impaired angiogenesis in these placentas. Further investigation would be needed to understand the molecular mechanism of defective angiogenesis in the placentas of Hmox1 knockout mouse embryos.
Assuntos
Heme Oxigenase-1 , Placenta , Animais , Feminino , Camundongos , Gravidez , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Camundongos Knockout , Placenta/metabolismo , Prolactina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Nucleoid-associated proteins (NAPs) regulate multiple cellular processes such as gene expression, virulence, and dormancy throughout bacterial species. NAPs help in the survival and adaptation of Mycobacterium tuberculosis (Mtb) within the host. Fourteen NAPs have been identified in Escherichia coli; however, only seven NAPs are documented in Mtb. Given its complex lifestyle, it is reasonable to assume that Mtb would encode for more NAPs. Using bioinformatics tools and biochemical experiments, we have identified the heparin-binding hemagglutinin (HbhA) protein of Mtb as a novel sequence-independent DNA-binding protein which has previously been characterized as an adhesion molecule required for extrapulmonary dissemination. Deleting the carboxy-terminal domain of HbhA resulted in a complete loss of its DNA-binding activity. Atomic force microscopy showed HbhA-mediated architectural modulations in the DNA, which may play a regulatory role in transcription and genome organization. Our results showed that HbhA colocalizes with the nucleoid region of Mtb. Transcriptomics analyses of a hbhA KO strain revealed that it regulates the expression of â¼36% of total and â¼29% of essential genes. Deletion of hbhA resulted in the upregulation of â¼73% of all differentially expressed genes, belonging to multiple pathways suggesting it to be a global repressor. The results show that HbhA is a nonessential NAP regulating gene expression globally and acting as a plausible transcriptional repressor.
Assuntos
Proteínas de Bactérias , Hemaglutininas , Mycobacterium tuberculosis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/química , DNA/metabolismo , Hemaglutininas/genética , Hemaglutininas/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Deleção de Genes , Proteínas de Ligação a DNA/genética , Domínios Proteicos/genética , Microscopia de Força AtômicaRESUMO
Heme oxygenases (Hmoxs) are enzymes that catalyze the first and rate-limiting step in the degradation of heme to carbon monoxide, iron, and biliverdin. The two main isozymes, namely Hmox1 and Hmox2, are encoded by two different genes. Mutation of the Hmox1 gene in mice is known to cause extensive prenatal lethality, and limited information is available about the expression of Hmox proteins in developing mouse embryos. In this study, immunohistochemistry was used to perform a detailed investigation comparing Hmox proteins in Hmox1 wild-type and knockout (KO) mouse embryos collected from wild-type and heterozygous timed-matings. Western analysis for Hmoxs was also done in the organs of late-gestation embryos. The results demonstrated cytoplasmic and nuclear localization of Hmoxs in all the organs examined in wild-type embryos. Interestingly, Hmox2 immunoreactive protein signals were significantly low in most of the organs of mid- and late-gestation Hmox1-KO embryos. Furthermore, relative levels of Hmox2 were revealed to be significantly lower in the lung and kidney of late-gestation Hmox1-KO embryos by western analysis, which complemented the immunohistochemistry findings in these two organs. The current study provides detailed immunoexpression patterns of Hmox proteins in wild-type and Hmox1-KO mouse embryos in mid- and late-gestation.
Assuntos
Heme Oxigenase (Desciclizante) , Heme Oxigenase-1 , Animais , Feminino , Camundongos , Gravidez , Heme/metabolismo , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/genética , Ferro , Embrião de MamíferosRESUMO
Bacillus anthracis Ser/Thr protein kinase PrkC (BasPrkC) is important for virulence of the bacterium within the host. Homologs of PrkC and its cognate phosphatase PrpC (BasPrpC) are the most conserved mediators of signaling events in diverse bacteria. BasPrkC homolog in Bacillus subtilis regulates critical processes like spore germination and BasPrpC modulates the activity of BasPrkC by dephosphorylation. So far, biochemical and genetic studies have provided important insights into the roles of BasPrkC and BasPrpC; however, regulation of their activities is not known. We studied the regulation of BasPrkC/BasPrpC pair and observed that Zn(2+) metal ions can alter their activities. Zn(2+) promotes BasPrkC kinase activity while inhibits the BasPrpC phosphatase activity. Concentration of Zn(2+) in growing B. anthracis cells was found to vary with growth phase. Zn(2+) was found to be lowest in log phase cells while it was highest in spores. This variation in Zn(2+) concentration is significant for understanding the antagonistic activities of BasPrkC/BasPrpC pair. Our results also show that BasPrkC activity is modulated by temperature changes and kinase inhibitors. Additionally, we identified Elongation Factor Tu (BasEf-Tu) as a substrate of BasPrkC/BasPrpC pair and assessed the impact of their regulation on BasEf-Tu phosphorylation. Based on these results, we propose Zn(2+) as an important regulator of BasPrkC/BasPrpC mediated phosphorylation cascades. Thus, this study reveals additional means by which BasPrkC can be activated leading to autophosphorylation and substrate phosphorylation.
Assuntos
Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/enzimologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Zinco/farmacologia , Bacillus anthracis/citologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Modelos Moleculares , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Relação Estrutura-AtividadeRESUMO
Reversible protein phosphorylation is a prevalent signaling mechanism which modulates cellular metabolism in response to changing environmental conditions. In this study, we focus on previously uncharacterized Mycobacterium tuberculosis Ser/Thr protein kinase (STPK) PknJ, a putative transmembrane protein. PknJ is shown to possess autophosphorylation activity and is also found to be capable of carrying out phosphorylation on the artificial substrate myelin basic protein (MyBP). Previous studies have shown that the autophosphorylation activity of M. tuberculosis STPKs is dependent on the conserved residues in the activation loop. However, our results show that apart from the conventional conserved residues, additional residues in the activation loop may also play a crucial role in kinase activation. Further characterization of PknJ reveals that the kinase utilizes unusual ions (Ni(2+), Co(2+)) as cofactors, thus hinting at a novel mechanism for PknJ activation. Additionally, as shown for other STPKs, we observe that PknJ possesses the capability to dimerize. In order to elucidate the signal transduction cascade emanating from PknJ, the M. tuberculosis membrane-associated protein fraction is treated with the active kinase and glycolytic enzyme Pyruvate kinase A (mtPykA) is identified as one of the potential substrates of PknJ. The phospholabel is found to be localized on serine and threonine residue(s), with Ser(37) identified as one of the sites of phosphorylation. Since Pyk is known to catalyze the last step of glycolysis, our study shows that the fundamental pathways such as glycolysis can also be governed by STPK-mediated signaling.
Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Piruvato Quinase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Biologia Computacional , Íons , Dados de Sequência Molecular , Mutação/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Multimerização Proteica , Estrutura Terciária de Proteína , Piruvato Quinase/química , Serina/metabolismo , Especificidade por SubstratoRESUMO
The propensity of bacterium to sporulate or retain the vegetative form depends on the amount of phosphorylated Spo0A (Spo0A(-P)), regulated by Spo0E multigene family of phosphatases (Spo0E, YisI and YnzD). Phylogenetic analysis revealed that Spo0E multigene family of phosphatases (SMFP) descends in two distinct clades of aerobic (Bacillus cluster) and anaerobic (Clostridia cluster) sporulating bacteria. High sequence conservation within species gives a notion that these members could have evolved through lineage and species-specific duplication event. Of the five genes in Bacillus cereus group, three are pathogen specific, and their synteny suggests that these paralogs could be involved in the regulation of amino acid metabolism and its transport. Overexpression of B. subtilis Spo0E, an ortholog of SMFP members in B. anthracis (BAS1251), resulted in sporulation deficient phenotype in B. anthracis. B. anthracis Spo0A(-P) binds to a consensus DNA sequence 5'-TGNCGAA-3' ('0A-like box') and loses its DNA binding ability following treatment with B. subtilis Spo0E. Thus, B. subtilis Spo0E acts on B. anthracis Spo0A(-P) and, therefore could complement the function of BAS1251. Further, since '0A-like box' are present in the promoter region of abrB gene, a known regulator of anthrax toxin gene expression, cross talk among SMFP members and Spo0A(-P)-AbrB could regulate the expression of anthrax toxin genes.
Assuntos
Bacillus anthracis/genética , Proteínas de Bactérias/genética , Evolução Molecular , Família Multigênica , Bacillus anthracis/enzimologia , Sequência Conservada , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Monoéster Fosfórico Hidrolases/genética , Filogenia , Alinhamento de Sequência , Especificidade da EspécieRESUMO
UVA (320-380 nm) radiation generates an oxidative stress in cells and leads to an immediate release of potentially damaging labile iron pools in human skin cells. Treatment of cultured skin fibroblasts for several hours with physiologically relevant concentrations of either epicatechin (EC), a flavonoid plant constituent present in foods, or methylated epicatechin (3'-O-methyl epicatechin, MeOEC), its major human metabolite, prevents this iron release. The similarity of the effectiveness of EC and MeOEC argues against chelation as the mechanism of iron removal. Evidence based on measurements of lysosomal integrity strongly supports the hypothesis that the catechins protect against lysosomal destruction by UVA. Such damage would normally lead to protease release, which has been previously shown to cause ferritin degradation and release of labile iron.
Assuntos
Catequina/farmacologia , Ferro/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Linhagem Celular , Colagenases/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Expressão Gênica/efeitos dos fármacos , Humanos , Quelantes de Ferro/metabolismo , Lisossomos/efeitos da radiação , Inibidores de Metaloproteinases de Matriz , Estresse Oxidativo/efeitos da radiação , Raios UltravioletaRESUMO
Mutation of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARbeta/delta-null mutant embryos. While very little is known at present about the pathway governed by PPARbeta/delta in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARbeta/delta-null embryos is found in the giant cell layer. PPARbeta/delta activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARbeta/delta is silenced. Conversely, exposure of Rcho-1 cells to a PPARbeta/delta agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARbeta/delta activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARbeta/delta also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARbeta/delta-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARbeta/delta in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARbeta/delta agonist as therapeutic agents of broad application.
Assuntos
Diferenciação Celular , Células Gigantes/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Trofoblastos/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Feminino , Vetores Genéticos , Células Gigantes/fisiologia , Lipídeos/biossíntese , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , PPAR delta/genética , PPAR beta/genética , Peptídeos/metabolismo , Perilipina-2 , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transformação Genética , Trofoblastos/fisiologiaRESUMO
The aim of the present investigation was to determine whether an acute bout of exercise increases heme oxygenase-1 (HO-1) mRNA accumulation in human lymphocytes. Eight male subjects performed separate exercise and rest trials in a randomised order at least 10 days apart. In the exercise trial subjects ran for 75-min at a speed corresponding to 70% maximal oxygen uptake, and in the resting trial subjects sat calmly in the laboratory for an equivalent period of time. Lymphocytes were harvested from blood samples taken before and after each trial. Total RNA was isolated and used to determine the fold-change in HO-1 mRNA accumulation relative to baseline values using real time reverse transcription-polymerase chain reaction. HO-1 protein was determined by Western blotting. Six of the eight subjects showed an increase in HO-1 mRNA greater than two-fold after exercise. The median peak fold-change was 2.7 fold with one subject showing a particularly pronounced response (20-fold) 24 h post-exercise. In the rest trial the level of HO-1 mRNA did not change over the period of investigation. There was also an increase in HO-1 protein 2 h after exercise. These results complement an earlier study showing that acute exercise of a different type (half marathon) leads to an increase in HO-1 expression in lymphocytes.
Assuntos
Exercício Físico , Regulação da Expressão Gênica , Heme Oxigenase (Desciclizante)/biossíntese , Interleucina-6/sangue , Linfócitos/citologia , Linfócitos/metabolismo , Adulto , Anti-Inflamatórios/farmacologia , Western Blotting , Radicais Livres , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1 , Humanos , Inflamação , Interleucina-6/metabolismo , Leucócitos/citologia , Masculino , Proteínas de Membrana , Estresse Oxidativo , Oxigênio/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de TempoRESUMO
There is considerable interest in the biological properties of flavonoids in terms of their antioxidant and cytoprotective actions. The interaction of the flavanone hesperetin with human skin fibroblasts (FEK4) has revealed the potential for metabolism to hesperetin glucuronide and its subsequent extrusion. As a consequence of this observation, the effectiveness of hesperetin glucuronides, in comparison with that of the aglycone form, in protecting against UV-A radiation has been investigated. The results indicate that hesperetin glucuronides, but not hesperetin, protect against UV-A-induced necrotic cell death.
Assuntos
Flavonoides/metabolismo , Glucuronídeos/química , Hesperidina/biossíntese , Pele/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Fibroblastos/metabolismo , Hesperidina/química , Humanos , Espectrometria de Massas , Pele/citologiaRESUMO
The ultraviolet A component of sunlight causes both acute and chronic damage to human skin. In this study the potential of epicatechin, an abundant dietary flavanol, and 3'-O-methyl epicatechin, one of its major in vivo metabolites, to protect against UVA-induced damage was examined using cultured human skin fibroblasts as an in vitro model. The results obtained clearly show that both epicatechin and its metabolite protect these fibroblasts against UVA damage and cell death. The hydrogen-donating antioxidant properties of these compounds are probably not the mediators of this protective response. The protection is a consequence of induction of resistance to UVA mediated by the compounds and involves newly synthesized proteins. The study provides clear evidence that this dietary flavanol has the potential to protect human skin against the deleterious effects of sunlight.