Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Plant ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39001606

RESUMO

Plant immunity is a multi-layered process that includes recognition of patterns or effectors from pathogens to elicit defense responses. These include the induction of a cocktail of defense metabolites that typically restrict pathogen virulence. Here, we investigate the interaction between barley roots and the fungal pathogens Bipolaris sorokiniana (Bs) and Fusarium graminearum (Fg) at the metabolite level. We identify hordedanes, a previously undescribed set of labdane- related diterpenoids with antimicrobial properties, as critical players in these interactions. Infection of barley roots by Bs and Fg elicits hordedane synthesis from a 600-kb gene cluster. Heterologous reconstruction of the biosynthesis pathway in yeast and Nicotiana benthamiana produced several hordedanes, including one of the most functionally decorated products 19-ß-hydroxy- hordetrienoic acid (19-OH-HTA). Barley mutants in the diterpene synthase genes of the cluster are unable to produce hordedanes but, unexpectedly, show reduced Bs colonization. By contrast, colonization by Fusarium graminearum, another fungal pathogen of barley and wheat, is four-fold higher in mutants completely lacking hordedanes. Accordingly, 19-OH-HTA enhances both germination and growth of Bs, while it inhibits other pathogenic fungi, including Fg. Microscopy and transcriptomics suggest hordedanes delay the necrotrophic phase of Bs. Our data show that adapted pathogens such as Bs can subvert plant metabolic defenses to facilitate root colonization.

2.
Metab Eng ; 82: 193-200, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387676

RESUMO

Diterpenoids form a diverse group of natural products, many of which are or could become pharmaceuticals or industrial chemicals. The modular character of diterpene biosynthesis and the promiscuity of the enzymes involved make combinatorial biosynthesis a promising approach to generate libraries of diverse diterpenoids. Here, we report on the combinatorial assembly in yeast of ten diterpene synthases producing (+)-copalyl diphosphate-derived backbones and four cytochrome P450 oxygenases (CYPs) in diverse combinations. This resulted in the production of over 200 diterpenoids. Based on literature and chemical database searches, 162 of these compounds can be considered new-to-Nature. The CYPs accepted most substrates they were given but remained regioselective with few exceptions. Our results provide the basis for the systematic exploration of the diterpenoid chemical space in yeast using sequence databases.


Assuntos
Produtos Biológicos , Diterpenos , Saccharomyces cerevisiae/genética , Diterpenos/química , Sistema Enzimático do Citocromo P-450/genética
4.
Phytochemistry ; 202: 113356, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35934105

RESUMO

Like angiosperms from several other families, the leguminous shrub Gastrolobium bilobum R.Br. produces and accumulates fluoroacetate, indicating that it performs the difficult chemistry needed to make a C-F bond. Bioinformatic analyses indicate that plants lack homologs of the only enzymes known to make a C-F bond, i.e., the Actinomycete flurorinases that form 5'-fluoro-5'-deoxyadenosine from S-adenosylmethionine and fluoride ion. To probe the origin of fluoroacetate in G. bilobum we first showed that fluoroacetate accumulates to millimolar levels in young leaves but not older leaves, stems or roots, that leaf fluoroacetate levels vary >20-fold between individual plants and are not markedly raised by sodium fluoride treatment. Young leaves were fed adenosine-13C-ribose, 13C-serine, or 13C-acetate to test plausible biosynthetic routes to fluoroacetate from S-adenosylmethionine, a C3-pyridoxal phosphate complex, or acetyl-CoA, respectively. Incorporation of 13C into expected metabolites confirmed that all three precursors were taken up and metabolized. Consistent with the bioinformatic evidence against an Actinomycete-type pathway, no adenosine-13C-ribose was converted to 13C-fluoroacetate; nor was the characteristic 4-fluorothreonine product of the Actinomycete pathway detected. Similarly, no 13C from acetate or serine was incorporated into fluoroacetate. While not fully excluding the hypothetical pathways that were tested, these negative labeling data imply that G. bilobum creates the C-F bond by an unprecedented biochemical reaction. Enzyme(s) that mediate such a reaction could be of great value in pharmaceutical and agrochemical manufacturing.


Assuntos
Fluoretação , S-Adenosilmetionina , Fluoracetatos/química , Fluoracetatos/metabolismo , Plantas/metabolismo , Ribose , Serina
5.
Plant Physiol ; 188(2): 971-983, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34718794

RESUMO

Continuous directed evolution of enzymes and other proteins in microbial hosts is capable of outperforming classical directed evolution by executing hypermutation and selection concurrently in vivo, at scale, with minimal manual input. Provided that a target enzyme's activity can be coupled to growth of the host cells, the activity can be improved simply by selecting for growth. Like all directed evolution, the continuous version requires no prior mechanistic knowledge of the target. Continuous directed evolution is thus a powerful way to modify plant or non-plant enzymes for use in plant metabolic research and engineering. Here, we first describe the basic features of the yeast (Saccharomyces cerevisiae) OrthoRep system for continuous directed evolution and compare it briefly with other systems. We then give a step-by-step account of three ways in which OrthoRep can be deployed to evolve primary metabolic enzymes, using a THI4 thiazole synthase as an example and illustrating the mutational outcomes obtained. We close by outlining applications of OrthoRep that serve growing demands (i) to change the characteristics of plant enzymes destined for return to plants, and (ii) to adapt ("plantize") enzymes from prokaryotes-especially exotic prokaryotes-to function well in mild, plant-like conditions.


Assuntos
Evolução Molecular Direcionada/métodos , Enzimas/genética , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética
6.
Biochemistry ; 60(47): 3555-3565, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34729986

RESUMO

Enzymes have in vivo life spans. Analysis of life spans, i.e., lifetime totals of catalytic turnovers, suggests that nonsurvivable collateral chemical damage from the very reactions that enzymes catalyze is a common but underdiagnosed cause of enzyme death. Analysis also implies that many enzymes are moderately deficient in that their active-site regions are not naturally as hardened against such collateral damage as they could be, leaving room for improvement by rational design or directed evolution. Enzyme life span might also be improved by engineering systems that repair otherwise fatal active-site damage, of which a handful are known and more are inferred to exist. Unfortunately, the data needed to design and execute such improvements are lacking: there are too few measurements of in vivo life span, and existing information about the extent, nature, and mechanisms of active-site damage and repair during normal enzyme operation is too scarce, anecdotal, and speculative to act on. Fortunately, advances in proteomics, metabolomics, cheminformatics, comparative genomics, and structural biochemistry now empower a systematic, data-driven approach for identifying, predicting, and validating instances of active-site damage and its repair. These capabilities would be practically useful in enzyme redesign and improvement of in-use stability and could change our thinking about which enzymes die young in vivo, and why.


Assuntos
Biocatálise , Estabilidade Enzimática , Domínio Catalítico , Biologia de Sistemas
7.
J Agric Food Chem ; 67(49): 13437-13450, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30994346

RESUMO

Rosemary and sage species from Lamiaceae contain high amounts of structurally related but diverse abietane diterpenes. A number of substances from this compound family have potential pharmacological activities and are used in the food and cosmetic industry. This has raised interest in their biosynthesis. Investigations in Rosmarinus officinalis and some sage species have uncovered two main groups of cytochrome P450 oxygenases that are involved in the oxidation of the precursor abietatriene. CYP76AHs produce ferruginol and 11-hydroxyferruginol, while CYP76AKs catalyze oxidations at the C20 position. Using a modular Golden-Gate-compatible assembly system for yeast expression, these enzymes were systematically tested either alone or in combination. A total of 14 abietane diterpenes could be detected, 8 of which have not been reported thus far. We demonstrate here that yeast is a valid system for engineering and reconstituting the abietane diterpene network, allowing for the discovery of novel compounds with potential bioactivity.


Assuntos
Abietanos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Rosmarinus/metabolismo , Saccharomyces cerevisiae/metabolismo , Salvia officinalis/química , Salvia officinalis/metabolismo , Abietanos/química , Sistema Enzimático do Citocromo P-450/genética , Estrutura Molecular , Oxirredução , Rosmarinus/química , Saccharomyces cerevisiae/genética , Salvia officinalis/genética
8.
Phytochemistry ; 161: 149-162, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30733060

RESUMO

In plant terpene biosynthesis, oxidation of the hydrocarbon backbone produced by terpene synthases is typically carried out by cytochrome P450 oxygenases (CYPs). The modifications introduced by CYPs include hydroxylations, sequential oxidations at one position and ring rearrangements and closures. These reactions significantly expand the structural diversity of terpenoids, but also provide anchoring points for further decorations by various transferases. In recent years, there has been a significant increase in reports of CYPs involved in plant terpene pathways. Plant diterpenes represent an important class of metabolites that includes hormones and a number of industrially relevant compounds such as pharmaceutical, aroma or food ingredients. In this review, we provide a comprehensive survey on CYPs reported to be involved in plant diterpene biosynthesis to date. A phylogenetic analysis showed that only few CYP clans are represented in diterpene biosynthesis, namely CYP71, CYP85 and CYP72. Remarkably few CYP families and subfamilies within those clans are involved, indicating specific expansion of these clades in plant diterpene biosynthesis. Nonetheless, the evolutionary trajectory of CYPs of specialized diterpene biosynthesis is diverse. Some are recently derived from gibberellin biosynthesis, while others have a more ancient history with recent expansions in specific plant families. Among diterpenoids, labdane-related diterpenoids represent a dominant class. The availability of CYPs from diverse plant species able to catalyze oxidations in specific regions of the labdane-related backbones provides opportunities for combinatorial biosynthesis to produce novel diterpene compounds that can be screened for biological activities of interest.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/metabolismo , Plantas/metabolismo , Diterpenos/química , Filogenia , Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA