Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Intervalo de ano de publicação
1.
Braz J Med Biol Res ; 46(11): 936-942, 2013 11.
Artigo em Inglês | MEDLINE | ID: mdl-24270908

RESUMO

The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

2.
Braz. j. med. biol. res ; 46(11): 936-942, 18/1jan. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-694024

RESUMO

The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

3.
Pharmacol Biochem Behav ; 63(3): 367-75, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10418776

RESUMO

The extract of the pericarp of castor bean (Ricinus communis) showed some typical central nervous system stimulant effects when administered to mice. The animals became exophthalmic, presented tremors and clonic seizures and died a few minutes after receiving larger doses of the extract. At lower doses the extract improved memory consolidation and showed some neuroleptic-like properties, such as a decrease in exploratory behavior and catalepsy. The memory-improving effect and the seizure-eliciting properties of the extract were also observed with the administration of ricinine, a neutral alkaloid isolated from the extract. However, the neuroleptic-like properties of the extract were not observed with ricinine. As the therapeutic index of ricinine is of the order of 200, the compound may be considered as a promising cognition-enhancing drug that may be used for the treatment of human amnesias.


Assuntos
Alcaloides/farmacologia , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Plantas Tóxicas , Piridonas , Ricinus/química , Alcaloides/química , Animais , Ansiolíticos/farmacologia , Antipsicóticos/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Catalepsia/induzido quimicamente , Estimulantes do Sistema Nervoso Central/química , Exoftalmia/induzido quimicamente , Força da Mão/fisiologia , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pupila/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA