Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 111(1): 35-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36069387

RESUMO

Electroactive smart materials play an important role for tissue regenerative applications. Poly(vinylidene fluoride) (PVDF) is a specific subtype of piezoelectric electroactive material that generates electrical potential upon mechanical stimulation. This work focuses on the application of piezoelectric PVDF films for neural differentiation. Human neural precursor cells (hNPCs) are cultured on piezoelectric poled and non-poled ß-PVDF films with or without a pre-coating step of poly-d-lysine and laminin (PDL/L). Subsequently, hNPCs differentiation into the neuronal lineage is assessed (MAP2+ and DCX+ ) under static or dynamic (piezoelectric stimulation) culture conditions. The results demonstrate that poled and coated ß-PVDF films induce neuronal differentiation under static culture conditions which is further enhanced with mechanical stimulation. In silico calculations of the electrostatic potential of different domains of laminin, highlight the high polarity of those domains, which shows a clear preference to interact with the varying surface electric field of the piezoelectric material under mechanical stimulation. These interactions might explain the higher neuronal differentiation induced by poled ß-PVDF films pre-coated with PDL/L under dynamic conditions. Our results suggest that electromechanical stimuli, such as the ones induced by piezoelectric ß-PVDF films, are suitable to promote neuronal differentiation and hold great promise for the development of neuroregenerative therapies.


Assuntos
Laminina , Células-Tronco Neurais , Humanos , Eletricidade , Laminina/farmacologia , Polivinil/farmacologia , Estimulação Elétrica
2.
Molecules ; 26(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885928

RESUMO

Considering our interest in the use of peptides as potential target-specific drugs or as delivery vectors of metallodrugs for various biomedical applications, it is crucial to explore improved synthetic methodologies to accomplish the highest peptide crude purity in the shortest time possible. Therefore, we compared "classical" fluorenylmethoxycarbonyl (Fmoc)-solid phase peptide synthesis (SPPS) with ultrasound(US)-assisted SPPS based on the preparation of three peptides, namely the fibroblast growth factor receptor 3(FGFR3)-specific peptide Pep1 (VSPPLTLGQLLS-NH2) and the novel peptides Pep2 (RQMATADEA-NH2) and Pep3 (AAVALLPAVLLALLAPRQMATADEA-NH2), which are being developed aimed at interfering with the intracellular protein-protein interaction(PPI) RANK-TRAF6. Our results demonstrated that US-assisted SPPS led to a 14-fold (Pep1) and 4-fold time reduction (Pep2) in peptide assembly compared to the "classical" method. Interestingly, US-assisted SPPS yielded Pep1 in higher purity (82%) than the "classical" SPPS (73%). The significant time reduction combined with high crude peptide purity attained prompted use to apply US-assisted SPPS to the large peptide Pep3, which displays a high number of hydrophobic amino acids and homooligo-sequences. Remarkably, the synthesis of this 25-mer peptide was attained during a "working day" (347 min) in moderate purity (approx. 49%). In conclusion, we have reinforced the importance of using US-SPPS towards facilitating the production of peptides in shorter time with increased efficacy in moderate to high crude purity. This is of special importance for long peptides such as the case of Pep3.


Assuntos
Peptídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Humanos , Peptídeos/química , Receptor Ativador de Fator Nuclear kappa-B/química , Receptores de Fatores de Crescimento de Fibroblastos/química , Sonicação/métodos , Fator 6 Associado a Receptor de TNF/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA