Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e32484, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961896

RESUMO

In the present study, we prepared magnetite nanoparticles (MNPs) loaded with natural Moringa oleifera (M. olf) herb and Epilim (Ep) drug to evaluate the anti-cancerous activity against brain cancer cells. All the samples were prepared via co-precipitation approach modified with different concentrations of M. olf and Ep drug at room temperature. The MNPs loaded with drug and natural herb were studied in terms of crystal structure, morphology, colloidal stability, size distribution, and magnetic properties. Field emission scanning electron microscopy (FESEM) images exhibited the morphologies of samples with spherical shape as well as the particles size of 9 nm for MNPs and up to 23 nm for its composites. The results of vibrating sample magnetometer (VSM) indicated the magnetization saturation (Ms) of 42.510 emu/g for MNPs. This value reduced to 16-35 emu/g upon loading MNPs with different concentrations of M. olf and Ep. Fourier transform infrared spectroscopy (FTIR) indicated the chemical interaction between the Ep, M.olf and MNPs. Brunauer-Emmett-Teller (BET) analysis confirmed the largest surface area for MNPs (422.61 m2/g) which gradually reduced on addition of M. olf and Ep indicating the successful loading. The zeta potential measurements indicated that the MNPs and MNPs loaded with M. olf and Ep are negatively charged and can be dispersed in the suspension. Furthermore, U87 human glioblastoma cell line was used for the in vitro cellular studies to determine the efficacy of synthesized MNPs against cancer cells. The results confirmed the anti-proliferative activity of the MNPs loaded with M. olf and Ep.

2.
ACS Omega ; 8(45): 42301-42310, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024767

RESUMO

Petroleum-based plastics are used as packaging materials because of their low cost and high availability; however, continuous use of these nondegradable materials especially in the food industry has led to environmental pollution. The present study aimed to synthesize antibacterial and biodegradable films based on natural biopolymers carboxymethyl cellulose (CMC), poly(vinyl alcohol) (PVA), and ascorbic acid (AA) cross-linked in the presence of glutaraldehyde (GA). The films were synthesized in two different concentrations, 60PVA:40CMC:AA and 70PVA:30CMC:AA with a fixed amount of AA. Films with smooth texture and overall uniform thickness were obtained. Fourier transform infrared spectroscopy (FTIR) confirmed the cross-linking between the aldehyde group of GA and hydroxyl of PVA through detection of acetal and ether bridges. The synthesized films were thermally stable in the temperature range of 180-300 °C; however, 70PVA:30CMC:AA showed higher weight loss in this range as compared to the 60PVA:40CMC:AA film. Soil burial test demonstrated that the 60PVA:40CMC:AA film was more degradable (71% at day 15) as compared to the 70PVA:30CMC:AA film (65% at day 15). The films exhibited excellent antimicrobial activity against Gram-positive staphylococcus aureus(inhibition zone of 21 mm) and Gram-negative Escherichia coli (inhibition zone of 15 mm). In comparison, the 60PVA:40CMC:AA film showed better results in terms of high mechanical strength, uniform morphology, higher soil burial degradation, and lower water vapor transmission rate. Therefore, the prepared film could be used as a promising candidate in the food packaging industry.

3.
Heliyon ; 9(11): e21636, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027746

RESUMO

Globally, there is an increase in a number of bone disorders including osteoarthritis (OA), osteomyelitis, bone cancer, and etc., which has led to a demand for bone tissue regeneration. In order to take use of the osteogenic potential of natural herbs, mesoporous bioactive glass nanoparticles (MBGNs) have the ability to deliver therapeutically active chemicals locally. MBGNs influence bioactivity and osteointegration of materials making them suitable for bone tissue engineering (BTE). In the present study, we developed Peganum Harmala (P. harmala) loaded MBGNs (PH-MBGNs) synthesized via modified Stöber process. The MBGNs were analyzed in terms of surface morphology, chemical make-up, amorphous nature, chemical interaction, pore size, and surface area before and after loading with P. harmala. A burst release of drug from PH-MBGNs was observed within 8 h immersion in phosphate buffer saline (PBS). PH-MBGNs effectively prevented Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) from spreading. Furthermore, PH-MBGNs developed a hydroxyapatite (HA) layer in the presence of simulated body fluid (SBF) after 21 days, which confirmed the in-vitro bioactivity of MBGNs. In conclusion, PH-MBGNs synthesized in this work are potential candidate for scaffolding or a constituent in the coatings for BTE applications.

4.
J Mech Behav Biomed Mater ; 148: 106188, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37856992

RESUMO

Electrophoretic deposition (EPD) of polyether ether ketone (PEEK) coatings on metallic implants has recently attracted a great deal of interest; however, further investigation into their corrosion, surface, and tribological properties is required for their clinical application. Using Potentiodynamic polarization and Mott-Schottky analysis of PEEK coatings, we analyzed the electrochemical corrosion behavior of electrophoretically deposited PEEK coatings on 316L stainless steel (SS) substrates. In addition, the tribological behavior of the coatings was determined through pin-on-disc and scratch testing. Initially, the EPD parameters were optimized using a Taguchi Design of Experiment (DoE) approach. The coatings exhibited irregular shaped grains along with ∼66 µm of thickness. Fourier transform infrared spectroscopy confirmed the presence of functional groups ascribed with PEEK. The coatings were moderately hydrophobic and had an average roughness of ∼2 µm. The corrosion studies demonstrated promising features of current density and corrosion potential, indicating that corrosion resistance significantly improves with PEEK coating. Electrochemical impedance spectroscopy also confirmed the corrosion resistance of PEEK coating. The coatings exhibited a slightly lower wear resistance than SS samples, but still possessed adequate wear and scratch resistance for biomedical applications. The current study confirmed that the PEEK coatings on metallic implants is effective for orthopedic applications where corrosion and tribology are major concerns.


Assuntos
Materiais Revestidos Biocompatíveis , Aço Inoxidável , Aço Inoxidável/química , Materiais Revestidos Biocompatíveis/química , Corrosão , Polietilenoglicóis/química , Cetonas/química , Éteres
5.
ACS Appl Bio Mater ; 6(11): 5052-5066, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37857344

RESUMO

Additive manufacturing (also known as 3D printing) is a promising method for producing patient-specific implants. In the present study, sodium alginate (Na-ALG)/poly(vinyl alcohol) (PVA) polymer blends of varying ratios (1:0, 3:1, 1:1, and 1:3) were used to produce tailored-designed skin scaffolds using a 3D bioprinter. Samples of skin scaffolds were printed at 20 layers with a layer height of 0.15 mm using a needle with an inner diameter of 330 µm while maintaining the extrusion speed, extrusion width, and fill density at 10 mm/s, 0.2 mm, and 85%, respectively. The Na-ALG/PVA blend with a 3:1 ratio showed the best printability due to its good viscosity and minimal nozzle leakage, allowing for the fabrication of skin scaffolds with high fidelity and the desired morphological characteristics. Then, copper-silver doped mesoporous bioactive glass nanoparticles (Cu-Ag MBGNs) were incorporated into the Na-ALG/PVA blend (which had already been prepared by using a Na-ALG:PVA ratio of 3:1) in order to obtain therapeutic (angiogenic and antibacterial) effects. The fabricated Na-ALG/PVA/Cu-Ag MBGNs biocomposite scaffolds with dimensions of 20 mm× 20 × 3 mm3 and pore size of 400 ± 60 µm exhibited a promising fidelity. The presence of chemical bonds attributed to Na-ALG, PVA, and Cu-Ag MBGNs and the uniform distribution of Na, C, and O elements within the microstructure of the scaffolds were confirmed by EDX, SEM, and FTIR analyses. The scaffolds were hydrophilic and exhibited proper swelling and degradation behavior for skin tissue engineering. According to the inhibition halo test, the scaffolds exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli. The cytocompatibility to human-derived fibroblast cells was confirmed by the WST-8 assay and in vivo Chorioallantoic Membrane Assay. In addition, Na-ALG/PVA/Cu-Ag MBGNs showed angiogenic potential, exhibiting favorable wound healing properties.


Assuntos
Nanopartículas , Álcool de Polivinil , Humanos , Cobre , Prata , Engenharia Tecidual , Alginatos , Antibacterianos/farmacologia , Escherichia coli
6.
Gels ; 8(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36286177

RESUMO

Hydrogels can provide instant relief to pain and facilitate the fast recovery of wounds. Currently, the incorporation of medicinal herbs/plants in polymer matrix is being investigated due to their anti-bacterial and wound healing properties. Herein, we investigated the novel combination of chitosan (CS) and chondroitin sulfate (CHI) to synthesize hydrogels through freeze gelation process and enriched it with garlic (Gar) by soaking the hydrogels in garlic juice for faster wound healing and resistance to microbial growth at the wound surface. The synthesized hydrogels were characterized via Fourier-transform infrared spectroscopy (FTIR), which confirmed the presence of relevant functional groups. The scanning electron microscopy (SEM) images exhibited the porous structure of the hydrogels, which is useful for the sustained release of Gar from the hydrogels. The synthesized hydrogels showed significant inhibition zones against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Furthermore, cell culture studies confirmed the cyto-compatibility of the synthesized hydrogels. Thus, the novel hydrogels presented in this study can offer an antibacterial effect during wound healing and promote tissue regeneration.

7.
Bioengineering (Basel) ; 9(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36004892

RESUMO

Implants are used to replace damaged biological structures in human body. Although stainless steel (SS) is a well-known implant material, corrosion of SS implants leads to the release of toxic metallic ions, which produce harmful effects in human body. To prevent material degradation and its harmful repercussions, these implanted materials are subjected to biocompatible coatings. Polymeric coatings play a vital role in enhancing the mechanical and biological integrity of the implanted devices. Zein is a natural protein extracted from corn and is known to have good biocompatibility and biodegradability. In this study, zein/Ag-Sr doped mesoporous bioactive glass nanoparticles (Ag-Sr MBGNs) were deposited on SS substrates via electrophoretic deposition (EPD) at different parameters. Ag and Sr ions were added to impart antibacterial and osteogenic properties to the coatings, respectively. In order to examine the surface morphology of coatings, optical microscopy and scanning electron microscopy (SEM) were performed. To analyze mechanical strength, a pencil scratch test, bend test, and corrosion and wear tests were conducted on zein/Ag-Sr doped MBGN coatings. The results show good adhesion strength, wettability, corrosion, and wear resistance for zein/Ag-Sr doped MBGN coatings as compared to bare SS substrate. Thus, good mechanical and biological properties were observed for zein/Ag-Sr doped MBGN coatings. Results suggested these zein/Ag-Sr MBGNs coatings have great potential in bone regeneration applications.

8.
J Funct Biomater ; 13(3)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35893465

RESUMO

In recent years, natural polymers have replaced synthetic polymers for antibacterial orthopedic applications owing to their excellent biocompatibility and biodegradability. Zein is a biopolymer found in corn. The lacking mechanical stability of zein is overcome by incorporating bioceramics, e.g., mesoporous bioactive glass nanoparticles (MBGNs). In the present study, pure zein and zein/Zn-Mn MBGN composite coatings were deposited via electrophoretic deposition (EPD) on 316L stainless steel (SS). Zn and Mn were co-doped in MBGNs in order to make use of their antibacterial and osteogenic potential, respectively. A Taguchi design of experiment (DoE) study was established to evaluate the effect of various working parameters on the morphology of the coatings. It was observed that coatings deposited at 20 V for 5 min with 4 g/L concentration (conc.) of Zn-Mn MBGNs showed the highest deposition yield. Uniform coatings with highly dispersed MBGNs were obtained adopting these optimized parameters. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were employed to investigate the morphology and elemental composition of zein/Zn-Mn MBGN composite coatings. Surface properties, i.e., coating roughness and wettability analysis, concluded that composite coatings were appropriate for cell attachment and proliferation. For adhesion strength, various techniques, including a tape test, bend test, pencil hardness test, and tensile test, were performed. Wear and corrosion analysis highlighted the mechanical and chemical stability of the coatings. The colony forming unit (CFU) test showed that the zein/Zn-Mn MBGN composite coating was highly effective against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) due to the presence of Zn. The formation of a hydroxyapatite (HA)-like structure upon immersion in the simulated body fluid (SBF) validated the in vitro bioactivity of the coating. Moreover, a WST-8 assay depicted that the MG-63 cells proliferate on the composite coating. It was concluded that the zein/Zn-Mn MBGN coating synthesized in this work can be used for bioactive and antibacterial orthopedic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA