Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38837943

RESUMO

Genomic information is increasingly used to inform medical treatments and manage future disease risks. However, any personal and societal gains must be carefully balanced against the risk to individuals contributing their genomic data. Expanding our understanding of actionable genomic insights requires researchers to access large global datasets to capture the complexity of genomic contribution to diseases. Similarly, clinicians need efficient access to a patient's genome as well as population-representative historical records for evidence-based decisions. Both researchers and clinicians hence rely on participants to consent to the use of their genomic data, which in turn requires trust in the professional and ethical handling of this information. Here, we review existing and emerging solutions for secure and effective genomic information management, including storage, encryption, consent, and authorization that are needed to build participant trust. We discuss recent innovations in cloud computing, quantum-computing-proof encryption, and self-sovereign identity. These innovations can augment key developments from within the genomics community, notably GA4GH Passports and the Crypt4GH file container standard. We also explore how decentralized storage as well as the digital consenting process can offer culturally acceptable processes to encourage data contributions from ethnic minorities. We conclude that the individual and their right for self-determination needs to be put at the center of any genomics framework, because only on an individual level can the received benefits be accurately balanced against the risk of exposing private information.


Assuntos
Genômica , Humanos , Genômica/métodos , Genômica/ética , Segurança Computacional , Computação em Nuvem , Consentimento Livre e Esclarecido
2.
Stud Health Technol Inform ; 310: 770-774, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269913

RESUMO

With the advancement of genomic engineering and genetic modification techniques, the uptake of computational tools to design guide RNA increased drastically. Searching for genomic targets to design guides with maximum on-target activity (efficiency) and minimum off-target activity (specificity) is now an essential part of genome editing experiments. Today, a variety of tools exist that allow the search of genomic targets and let users customize their search parameters to better suit their experiments. Here we present an overview of different ways to visualize these searched CRISPR target sites along with specific downstream information like primer design, restriction enzyme activity and mutational outcome prediction after a double-stranded break. We discuss the importance of a good visualization summary to interpret information along with different ways to represent similar information effectively.


Assuntos
Sistemas CRISPR-Cas , Visualização de Dados , RNA Guia de Sistemas CRISPR-Cas , Engenharia , Genômica
3.
Stud Health Technol Inform ; 310: 810-814, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269921

RESUMO

Genetic data is limited and generating new datasets is often an expensive, time-consuming process, involving countless moving parts to genotype and phenotype individuals. While sharing data is beneficial for quality control and software development, privacy and security are of utmost importance. Generating synthetic data is a practical solution to mitigate the cost, time and sensitivities that hamper developers and researchers in producing and validating novel biotechnological solutions to data intensive problems. Existing methods focus on mutation frequencies at specific loci while ignoring epistatic interactions. Alternatively, programs that do consider epistasis are limited to two-way interactions or apply genomic constraints that make synthetic data generation arduous or computationally intensive. To solve this, we developed Polygenic Epistatic Phenotype Simulator (PEPS). Our tool is a probabilistic model that can generate synthetic phenotypes with a controllable level of complexity.


Assuntos
Biotecnologia , Modelos Estatísticos , Humanos , Simulação por Computador , Fenótipo , Genótipo
4.
Stud Health Technol Inform ; 310: 820-824, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269923

RESUMO

Healthcare data is a scarce resource and access is often cumbersome. While medical software development would benefit from real datasets, the privacy of the patients is held at a higher priority. Realistic synthetic healthcare data can fill this gap by providing a dataset for quality control while at the same time preserving the patient's anonymity and privacy. Existing methods focus on American or European patient healthcare data but none is exclusively focused on the Australian population. Australia is a highly diverse country that has a unique healthcare system. To overcome this problem, we used a popular publicly available tool, Synthea, to generate disease progressions based on the Australian population. With this approach, we were able to generate 100,000 patients following Queensland (Australia) demographics.


Assuntos
Instalações de Saúde , Privacidade , Humanos , Austrália , Queensland , Progressão da Doença
5.
Stud Health Technol Inform ; 310: 1021-1025, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269969

RESUMO

Coronary artery disease (CAD) has the highest disease burden worldwide. To manage this burden, predictive models are required to screen patients for preventative treatment. A range of variables have been explored for their capacity to predict disease, including phenotypic (age, sex, BMI and smoking status), medical imaging (carotid artery thickness) and genotypic. We use a machine learning models and the UK Biobank cohort to measure the prediction capacity of these 3 variable categories, both in combination and isolation. We demonstrate that phenotypic variables from the Framingham risk score have the best prediction capacity, although a combination of phenotypic, medical imaging and genotypic variables deliver the most specific models. Furthermore, we demonstrate that Variant Spark, a random forest based GWAS platform, performs effective feature selection for SNP-based genotype variables, identifying 115 significantly associated SNPs to the CAD phenotype.


Assuntos
Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/genética , Espessura Intima-Media Carotídea , Fenótipo , Genótipo , Aprendizado de Máquina
6.
PLoS One ; 18(10): e0292924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37847697

RESUMO

Genome editing through the development of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)-Cas technology has revolutionized many fields in biology. Beyond Cas9 nucleases, Cas12a (formerly Cpf1) has emerged as a promising alternative to Cas9 for editing AT-rich genomes. Despite the promises, guide RNA efficiency prediction through computational tools search still lacks accuracy. Through a computational meta-analysis, here we report that Cas12a target and off-target cleavage behavior are a factor of nucleotide bias combined with nucleotide mismatches relative to the protospacer adjacent motif (PAM) site. These features helped to train a Random Forest machine learning model to improve the accuracy by at least 15% over existing algorithms to predict guide RNA efficiency for the Cas12a enzyme. Despite the progresses, our report underscores the need for more representative datasets and further benchmarking to reliably and accurately predict guide RNA efficiency and off-target effects for Cas12a enzymes.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Endonucleases/genética , RNA , Nucleotídeos
7.
Sci Rep ; 13(1): 17662, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848535

RESUMO

Alzheimer's disease (AD) is a complex genetic disease, and variants identified through genome-wide association studies (GWAS) explain only part of its heritability. Epistasis has been proposed as a major contributor to this 'missing heritability', however, many current methods are limited to only modelling additive effects. We use VariantSpark, a machine learning approach to GWAS, and BitEpi, a tool for epistasis detection, to identify AD associated variants and interactions across two independent cohorts, ADNI and UK Biobank. By incorporating significant epistatic interactions, we captured 10.41% more phenotypic variance than logistic regression (LR). We validate the well-established AD loci, APOE, and identify two novel genome-wide significant AD associated loci in both cohorts, SH3BP4 and SASH1, which are also in significant epistatic interactions with APOE. We show that the SH3BP4 SNP has a modulating effect on the known pathogenic APOE SNP, demonstrating a possible protective mechanism against AD. SASH1 is involved in a triplet interaction with pathogenic APOE SNP and ACOT11, where the SASH1 SNP lowered the pathogenic interaction effect between ACOT11 and APOE. Finally, we demonstrate that VariantSpark detects disease associations with 80% fewer controls than LR, unlocking discoveries in well annotated but smaller cohorts.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Epistasia Genética , Aprendizado de Máquina , Polimorfismo de Nucleotídeo Único , Apolipoproteínas E/genética , Predisposição Genética para Doença , Proteínas Adaptadoras de Transdução de Sinal/genética
8.
Comput Struct Biotechnol J ; 21: 4354-4360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711185

RESUMO

Random forests (RFs) are a widely used modelling tool capable of feature selection via a variable importance measure (VIM), however, a threshold is needed to control for false positives. In the absence of a good understanding of the characteristics of VIMs, many current approaches attempt to select features associated to the response by training multiple RFs to generate statistical power via a permutation null, by employing recursive feature elimination, or through a combination of both. However, for high-dimensional datasets these approaches become computationally infeasible. In this paper, we present RFlocalfdr, a statistical approach, built on the empirical Bayes argument of Efron, for thresholding mean decrease in impurity (MDI) importances. It identifies features significantly associated with the response while controlling the false positive rate. Using synthetic data and real-world data in health, we demonstrate that RFlocalfdr has equivalent accuracy to currently published approaches, while being orders of magnitude faster. We show that RFlocalfdr can successfully threshold a dataset of 106 datapoints, establishing its usability for large-scale datasets, like genomics. Furthermore, RFlocalfdr is compatible with any RF implementation that returns a VIM and counts, making it a versatile feature selection tool that reduces false discoveries.

10.
Eur J Hum Genet ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631540

RESUMO

There are inherent complexities and tensions in achieving a responsible balance between safeguarding patients' privacy and sharing genomic data for advancing health and medical science. A growing body of literature suggests establishing patient genomic data ownership, enabled by blockchain technology, as one approach for managing these priorities. We conducted an online survey, applying a mixed methods approach to collect quantitative (using scale questions) and qualitative data (using open-ended questions). We explored the views of 117 genomic professionals (clinical geneticists, genetic counsellors, bioinformaticians, and researchers) towards patient data ownership in Australia. Data analysis revealed most professionals agreed that patients have rights to data ownership. However, there is a need for a clearer understanding of the nature and implications of data ownership in this context as genomic data often is subject to collective ownership (e.g., with family members and laboratories). This research finds that while the majority of genomic professionals acknowledge the desire for patient data ownership, bioinformaticians and researchers expressed more favourable views than clinical geneticists and genetic counsellors, suggesting that their views on this issue may be shaped by how closely they interact with patients as part of their professional duties. This research also confirms that stronger health system infrastructure is a prerequisite for enabling patient data ownership, which needs to be underpinned by appropriate digital infrastructure (e.g., central vs. decentralised data storage), patient identity ownership (e.g., limited vs. self-sovereign identity), and policy at both federal and state levels.

11.
Prenat Diagn ; 43(1): 109-116, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484552

RESUMO

OBJECTIVE: European and Australian guidelines for cystic fibrosis (CF) reproductive carrier screening recommend testing a small number of high frequency CF causing variants, rather than comprehensive CFTR sequencing. The study objective was to determine variant detection rates of commercially available targeted reproductive carrier screening tests in Australia. METHODS: Next-generation DNA sequencing of the CFTR gene was performed on 2552 individuals from a whole population sample to identify CF causing variants. The variant detection rates of two commercially available Australian reproductive carrier screening tests, which target 50 or 175 CF causing variants, in this population were calculated. The ethnicity of individuals was determined using principal component analysis. RESULTS: Variant detection rates of the tests for 50 and 175 CF causing variants were 88.2% and 90.8%, respectively. No CF causing variants in individuals of East Asian ethnicity (n = 3) were detected by either test, while >86.6% (n = 69) of CF causing variants in Europeans would be identified by either test. CONCLUSIONS: Reproductive carrier screening tests for a targeted set of high frequency CF variants are unable to detect approximately 10% of CF variants in a multiethnic Australian population, and individuals of East Asian ethnicity are disproportionally affected by this test limitation.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/diagnóstico , Fibrose Cística/epidemiologia , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Austrália/epidemiologia , Testes Genéticos , Etnicidade , Mutação
12.
Comput Struct Biotechnol J ; 20: 2942-2950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677774

RESUMO

New SARS-CoV-2 variants emerge as part of the virus' adaptation to the human host. The Health Organizations are monitoring newly emerging variants with suspected impact on disease or vaccination efficacy as Variants Being Monitored (VBM), like Delta and Omicron. Genetic changes (SNVs) compared to the Wuhan variant characterize VBMs with current emphasis on the spike protein and lineage markers. However, monitoring VBMs in such a way might miss SNVs with functional effect on disease. Here we introduce a lineage-agnostic genome-wide approach to identify SNVs associated with disease. We curated a case-control dataset of 10,520 samples and identified 117 SNVs significantly associated with adverse patient outcome. While 40% (47) SNV are already monitored and 36% (43) are in the spike protein, we also identified 70 new SNVs that are associated with disease outcome. 31 of these are disease-worsening and predominantly located in the 3'-5' exonuclease (NSP14) with structural modelling revealing a concise cluster in the Zn binding domain that has known host-immune modulating function. Furthermore, we generate clade-independent VBM groupings by identifying interacting SNVs (epistasis). We find 37 sets of higher-order epistatic interactions joining 5 genomic regions (nsp3, nsp14, Spike S1, ORF3a, N). Structural modelling of these regions provides insights into potential mechanistic pathways of increased virulence as well as orthogonal methods of validation. Clade-independent monitoring of functionally interacting (epistasis, co-evolution) SNVs detected emerging VBM a week before they were flagged by Health Organizations and in conjunction with structural modelling provides faster, mechanistic insight into emerging strains to guide public health interventions.

13.
Data Brief ; 42: 108161, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35496474

RESUMO

Viral integration is a complex biological process, and it is useful to have a reference integration dataset with known properties to compare experimental data against, or for comparing with the results from computational tools that detect integration. To generate these data, we developed a pipeline for simulating integrations of a viral or vector genome into a host genome. Our method reproduces more complex characteristics of vector and viral integration, including integration of sub-genomic fragments, structural variation of the integrated genomes, and deletions from the host genome at the integration site. Our method [1] takes the form of a snakemake [2] pipeline, consisting of a Python [3] script using the Biopython [4] module that simulates integrations of a viral reference into a host reference. This produces a reference containing integrations, from which sequencing reads are simulated using ART [5]. The IDs of the reads crossing integration junctions are then annotated using another python script to produce the final output, consisting of the simulated reads and a table of the locations of those integrations and the reads crossing each integration junction. To illustrate our method, we provide simulated reads, integration locations, as well as the code required to simulate integrations using any virus and host reference. This simulation method was used to investigate the performance of viral integration tools in our research [6].

14.
J Mol Biol ; 434(11): 167408, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34929203

RESUMO

Detecting viral and vector integration events is a key step when investigating interactions between viral and host genomes. This is relevant in several fields, including virology, cancer research and gene therapy. For example, investigating integrations of wild-type viruses such as human papillomavirus and hepatitis B virus has proven to be crucial for understanding the role of these integrations in cancer. Furthermore, identifying the extent of vector integration is vital for determining the potential for genotoxicity in gene therapies. To address these questions, we developed isling, the first tool specifically designed for identifying viral integrations in both wild-type and vector from next-generation sequencing data. Isling addresses complexities in integration behaviour including integration of fragmented genomes and integration junctions with ambiguous locations in a host or vector genome, and can also flag possible vector recombinations. We show that isling is up to 1.6-fold faster and up to 170% more accurate than other viral integration tools, and performs well on both simulated and real datasets. Isling is therefore an efficient and application-agnostic tool that will enable a broad range of investigations into viral and vector integration. These include comparisons between integrations of wild-type viruses and gene therapy vectors, as well as assessing the genotoxicity of vectors and understanding the role of viruses in cancer.


Assuntos
Terapia Genética , Vetores Genéticos , Software , Integração Viral , Alphapapillomavirus/fisiologia , Vetores Genéticos/fisiologia , Vírus da Hepatite B/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/virologia
15.
Nucleic Acids Res ; 49(18): 10785-10795, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34534334

RESUMO

Precise genomic modification using prime editing (PE) holds enormous potential for research and clinical applications. In this study, we generated all-in-one prime editing (PEA1) constructs that carry all the components required for PE, along with a selection marker. We tested these constructs (with selection) in HEK293T, K562, HeLa and mouse embryonic stem (ES) cells. We discovered that PE efficiency in HEK293T cells was much higher than previously observed, reaching up to 95% (mean 67%). The efficiency in K562 and HeLa cells, however, remained low. To improve PE efficiency in K562 and HeLa, we generated a nuclease prime editor and tested this system in these cell lines as well as mouse ES cells. PE-nuclease greatly increased prime editing initiation, however, installation of the intended edits was often accompanied by extra insertions derived from the repair template. Finally, we show that zygotic injection of the nuclease prime editor can generate correct modifications in mouse fetuses with up to 100% efficiency.


Assuntos
Proteína 9 Associada à CRISPR , Edição de Genes , Animais , Proteína 9 Associada à CRISPR/genética , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células HEK293 , Células HeLa , Humanos , Células K562 , Camundongos , Plasmídeos/genética , Zigoto
16.
Sci Rep ; 11(1): 15923, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354094

RESUMO

Complex genetic diseases may be modulated by a large number of epistatic interactions affecting a polygenic phenotype. Identifying these interactions is difficult due to computational complexity, especially in the case of higher-order interactions where more than two genomic variants are involved. In this paper, we present BitEpi, a fast and accurate method to test all possible combinations of up to four bi-allelic variants (i.e. Single Nucleotide Variant or SNV for short). BitEpi introduces a novel bitwise algorithm that is 1.7 and 56 times faster for 3-SNV and 4-SNV search, than established software. The novel entropy statistic used in BitEpi is 44% more accurate to identify interactive SNVs, incorporating a p-value-based significance testing. We demonstrate BitEpi on real world data of 4900 samples and 87,000 SNPs. We also present EpiExplorer to visualize the potentially large number of individual and interacting SNVs in an interactive Cytoscape graph. EpiExplorer uses various visual elements to facilitate the discovery of true biological events in a complex polygenic environment.

17.
Comput Struct Biotechnol J ; 19: 3810-3816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285780

RESUMO

External DNA sequences can be inserted into an organism's genome either through natural processes such as gene transfer, or through targeted genome engineering strategies. Being able to robustly identify such foreign DNA is a crucial capability for health and biosecurity applications, such as anti-microbial resistance (AMR) detection or monitoring gene drives. This capability does not exist for poorly characterised host genomes or with limited information about the integrated sequence. To address this, we developed the INserted Sequence Information DEtectoR (INSIDER). INSIDER analyses whole genome sequencing data and identifies segments of potentially foreign origin by their significant shift in k-mer signatures. We demonstrate the power of INSIDER to separate integrated DNA sequences from normal genomic sequences on a synthetic dataset simulating the insertion of a CRISPR-Cas gene drive into wild-type yeast. As a proof-of-concept, we use INSIDER to detect the exact AMR plasmid in whole genome sequencing data from a Citrobacter freundii patient isolate. INSIDER streamlines the process of identifying integrated DNA in poorly characterised wild species or when the insert is of unknown origin, thus enhancing the monitoring of emerging biosecurity threats.

18.
Front Immunol ; 12: 701550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194442

RESUMO

The essential amino acid tryptophan (TRP) is the initiating metabolite of the kynurenine pathway (KP), which can be upregulated by inflammatory conditions in cells. Neuroinflammation-triggered activation of the KP and excessive production of the KP metabolite quinolinic acid are common features of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). In addition to its role in the KP, genes involved in TRP metabolism, including its incorporation into proteins, and synthesis of the neurotransmitter serotonin, have also been genetically and functionally linked to these diseases. ALS is a late onset neurodegenerative disease that is classified as familial or sporadic, depending on the presence or absence of a family history of the disease. Heritability estimates support a genetic basis for all ALS, including the sporadic form of the disease. However, the genetic basis of sporadic ALS (SALS) is complex, with the presence of multiple gene variants acting to increase disease susceptibility and is further complicated by interaction with potential environmental factors. We aimed to determine the genetic contribution of 18 genes involved in TRP metabolism, including protein synthesis, serotonin synthesis and the KP, by interrogating whole-genome sequencing data from 614 Australian sporadic ALS cases. Five genes in the KP (AFMID, CCBL1, GOT2, KYNU, HAAO) were found to have either novel protein-altering variants, and/or a burden of rare protein-altering variants in SALS cases compared to controls. Four genes involved in TRP metabolism for protein synthesis (WARS) and serotonin synthesis (TPH1, TPH2, MAOA) were also found to carry novel variants and/or gene burden. These variants may represent ALS risk factors that act to alter the KP and lead to neuroinflammation. These findings provide further evidence for the role of TRP metabolism, the KP and neuroinflammation in ALS disease pathobiology.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Predisposição Genética para Doença/genética , Triptofano/metabolismo , Humanos , Sequenciamento Completo do Genoma
19.
CRISPR J ; 4(2): 243-252, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33876955

RESUMO

The increased development of functionally diverse and highly specialized genome editors has created the need for comparative analytics tools that are able to profile the mutational outcomes, particularly rare and complex outcomes, to assess the editor's applicability to different domains. To address this need, we have developed Generalizable On-target activity ANAlyzer (GOANA), a high-throughput web-based software for determining editing efficiency and cataloguing rare outcomes from next-generation sequencing data. GOANA calculates mutation frequency and outcomes relative to a supplied control sample. It is scalable to thousands of target sites across the entire genome and is 4,000% faster than CRISPResso2. Mutations are reported on a "per-read" level rather than individually, enabling the identification of co-occurring mutations. GOANA is editor agnostic and can be applied to data generated from any targeted editing experiment, including base editors. Requiring only that control and treated reads are aligned to the same reference, GOANA can handle data from any library preparation method, including pooled amplicon and whole-genome sequencing. As a proof of principle, we analyze two large data sets of CRISPR-Cas9 and CRISPR-Cas12a editing, demonstrating the power of GOANA and highlighting several key differences between the two enzymes. GOANA is available for use at https://gt-scan.csiro.au/goana/ and as a command line tool from https://github.com/BauerLab/GOANA.


Assuntos
Edição de Genes/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Bactérias , Proteína 9 Associada à CRISPR , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endodesoxirribonucleases , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Taxa de Mutação , Software , Sequenciamento Completo do Genoma
20.
Neurobiol Aging ; 101: 297.e9-297.e11, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33581934

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by the progressive degeneration of motor neurons. Recently, genetic variants in GLT8D1 and ARPP21 were associated with ALS in a cohort of European descent. A synergistic relationship was proposed between ALS associated variants in GLT8D1 and ARPP21. We aimed to determine the prevalence of genetic variation in GLT8D1 and ARPP21 in an Australian cohort of familial (n = 81) and sporadic ALS (n = 618) cases using whole-exome and whole-genome sequencing data. No novel mutations were identified in either gene, nor was there significant enrichment of protein-altering sequence variation among ALS cases. GLT8D1 and ARPP21 mutations are not a common cause of ALS in Australian familial and sporadic cohorts.


Assuntos
Esclerose Lateral Amiotrófica/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Glicosiltransferases/genética , Resultados Negativos , Fosfoproteínas/genética , Austrália , Estudos de Coortes , Feminino , Humanos , Masculino , População Branca/genética , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA