Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biomed Mater Res A ; 108(3): 734-748, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31788941

RESUMO

In reconstructive surgery the use of prevascularized soft tissue equivalents is a promising approach for wound coverage of defects after tumor resection or trauma. However, in previous studies to generate soft tissue equivalents on collagen membranes, microcapillaries were restricted to superficial areas. In this study, to understand which factors were involved in the formation of these microcapillaries, the levels of the angiogenic factors vascular endothelial growth factor (VEGF), Interleukin-8 (IL-8), and basic fibroblast growth factor (bFGF) in the supernatants of the tissue equivalents were examined at various time points and conditions. Additionally, the influence of these factors on viability, proliferation, migration, and tube formation in monocultures compared to cocultures of fibroblast and endothelial cells was examined. The results showed that VEGF production was decreased in cocultures compared to fibroblast monocultures and the lowest VEGF levels were observed in endothelial cell monocultures. Additionally, the highest levels of IL-8 were observed in cocultures compared to monocultures. Similar results were observed for bFGF with lowest levels seen within the first 24 hr and highest levels in cocultures. VEGF and IL-8 were shown to promote endothelial cell viability, proliferation and migration and angiogenic parameters such as tube density, total tube length, and number of tube branches. Addition of VEGF and IL-8 to cocultures resulted in accelerated and denser formation of capillary-like structures. The results indicate that VEGF, IL-8, and bFGF strongly influence cellular behavior of endothelial cells and this information should be useful in promoting the formation of microcapillary-like structures in complex tissue equivalents.


Assuntos
Comunicação Celular , Células Endoteliais/citologia , Fibroblastos/citologia , Neovascularização Fisiológica , Engenharia Tecidual/métodos , Células Cultivadas , Técnicas de Cocultura/métodos , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Humanos , Interleucina-8/metabolismo , Microcirculação , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Tissue Eng Part C Methods ; 25(2): 82-92, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30501564

RESUMO

IMPACT STATEMENT: We illustrate a reliable and accelerated isolation routine for mucosal epithelial cells, which thereupon can be used for soft tissue engineering. This is highly important in the field of soft tissue engineering because mucosal equivalents are frequently usable in several surgical fields like gynecology, urology, otorhinolaryngology, ophthalmology, maxillofacial surgery, and many others. In this context the isolation of mucosal epithelial cells suitable for tissue engineering is mandatory. The reliable cultivation of mucosal or skin epithelial cells is challenging and there is currently no reproducible method. We demonstrate a solution for this problem by developing an accelerated and nevertheless reliable method.


Assuntos
Separação Celular/métodos , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Mucosa Bucal/citologia , Mucosa Bucal/fisiologia , Engenharia Tecidual , Células Cultivadas , Humanos
3.
Cell Commun Signal ; 16(1): 35, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29954386

RESUMO

BACKGROUND: Loss of PTEN is involved in tumor progression of several tumor entities including renal cell carcinoma (RCC). During the translation process PTEN generates a number of splice variants, including PTEN-Δ. We analyzed the impact of PTEN-Δ in RCC progression. METHODS: In specimens of RCC patients the expression of PTEN-Δ and PTEN was quantified. The PTEN expressing RCC cell line A498 and the PTEN deficient 786-O cell line were stably transfected with the PTEN-Δ or PTEN transcript. In Caki-1 cells that highly express PTEN-Δ, this isoform was knocked down by siRNA. Cell migration, adhesion, apoptosis and signaling pathways activities were consequently analyzed in vitro. RESULTS: Patients with a higher PTEN-Δ expression had a longer lymph node metastasis free and overall survival. In RCC specimens, the PTEN-Δ expression correlated with the PTEN expression. PTEN-Δ as well as PTEN induced a reduced migration when using extracellular matrix (ECM) compounds as chemotaxins. This effect was confirmed by knockdown of PTEN-Δ, inducing an enhanced migration. Likewise a decreased adhesion on these ECM components could be shown in PTEN-Δ and PTEN transfected cells. The apoptosis rate was slightly increased by PTEN-Δ. In a phospho-kinase array and Western blot analyses a consequently reduced activity of AKT, p38 and JNK could be shown. CONCLUSIONS: We could show that the PTEN splice variant PTEN-Δ acts similar to PTEN in a tumor suppressive manner, suggesting synergistic effects of the two isoforms. The impact of PTEN-Δ in context of tumor progression should thus be taken into account when generating new therapeutic options targeting PTEN signaling in RCC.


Assuntos
Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , PTEN Fosfo-Hidrolase/metabolismo , Apoptose , Carcinoma de Células Renais/genética , Adesão Celular , Movimento Celular , Progressão da Doença , Matriz Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Integrinas/metabolismo , Neoplasias Renais/genética , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética
4.
Oncotarget ; 9(21): 15766-15779, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29644008

RESUMO

Bone metastasis is an important prognostic factor in renal cell carcinoma (RCC). The calcium-sensing receptor (CaSR) has been associated with bone metastasis in several different malignancies. We analyzed the impact of CaSR in bone metastasis in RCC in vitro and in vivo. The RCC cell line 786-O was stably transfected with the CaSR gene and treated with calcium alone or in combination with the CaSR antagonist NPS2143. Afterwards migration, adhesion, proliferation and prominent signaling molecules were analyzed. Calcium treated CaSR-transfected 768-O cells showed an increased adhesion to endothelial cells and the extracellular matrix components fibronectin and collagen I, but not to collagen IV. The chemotactic cell migration and proliferation was also induced by calcium. The activity of SHC, AKT, ERK, P90RSK and JNK were enhanced after calcium treatment of CaSR-transfected cells. These effects were abolished by NPS2143. Development of bone metastasis was evaluated in vivo in a mouse model. Intracardiac injection of CaSR-transfected 768-O cells showed an increased rate of bone metastasis. The results indicate CaSR as an important component in the mechanism of bone metastasis in RCC. Therefore, targeting CaSR might be beneficial in patients with bone metastatic RCC with a high CaSR expression.

5.
Oncotarget ; 8(64): 107530-107542, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29296184

RESUMO

The therapy of advanced renal cell carcinoma (RCC) is still a major challenge. To intervene therapeutically a deeper comprehension of the particular steps of metastasis is necessary. In this context membrane bound receptors like integrins play a decisive role. We analyzed the integrin α5 expression in 141 clear cell RCC patients by Western blot. Patients with RCC expressed a significant higher level of integrin α5 in tumor than in normal tissue. The integrin α5 expression correlated with tumor grade, the development of distant metastases within five years after tumor nephrectomy and reduced survival. The RCC cell lines Caki-1 and CCF-RC1, which highly express integrin α5, were treated with fibronectin in combination with or without an inhibiting anti-integrin α5 antibody. Afterwards the migration, adhesion, viability and prominent signaling molecules were analyzed. Both cell lines showed a significant reduced migration potential as well as a decreased adhesion potential to fibronectin after treatment with an integrin α5 blocking antibody. A contribution of the AKT and ERK1/2 signaling pathways could be demonstrated. The results indicate integrin α5 as a potent marker to discriminate patients' tumor prognosis. Consequently the integrin subunit α5 can be considered as a target for individual therapy of advanced RCC.

6.
Int J Comput Dent ; 19(4): 323-339, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28008429

RESUMO

Already three decades ago, the potential of medical 3D printing (3DP) or rapid prototyping for improved patient treatment began to be recognized. Since then, more and more medical indications in different surgical disciplines have been improved by using this new technique. Numerous examples have demonstrated the enormous benefit of 3DP in the medical care of patients by, for example, planning complex surgical interventions preoperatively, reducing implantation steps and anesthesia times, and helping with intraoperative orientation. At the beginning of every individual 3D model, patient-specific data on the basis of computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound data is generated, which is then digitalized and processed using computer-aided design/computer-aided manufacturing (CAD/CAM) software. Finally, the resulting data sets are used to generate 3D-printed models or even implants. There are a variety of different application areas in the various medical fields, eg, drill or positioning templates, or surgical guides in maxillofacial surgery, or patient-specific implants in orthopedics. Furthermore, in vascular surgery it is possible to visualize pathologies such as aortic aneurysms so as to improve the planning of surgical treatment. Although rapid prototyping of individual models and implants is already applied very successfully in regenerative medicine, most of the materials used for 3DP are not yet suitable for implantation in the body. Therefore, it will be necessary in future to develop novel therapy approaches and design new materials in order to completely reconstruct natural tissue.


Assuntos
Desenho Assistido por Computador , Impressão Tridimensional , Próteses e Implantes , Diagnóstico por Imagem , Humanos
7.
Int J Comput Dent ; 19(4): 301-321, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28008428

RESUMO

The structural and functional repair of lost bone is still one of the biggest challenges in regenerative medicine. In many cases, autologous bone is used for the reconstruction of bone tissue; however, the availability of autologous material is limited, which always means additional stress to the patient. Due to this, more and more frequently various biocompatible materials are being used instead for bone augmentation. In this context, in order to ensure the structural function of the bone, scaffolds are implanted and fixed into the bone defect, depending on the medical indication. Nevertheless, for the surgeon, every individual clinical condition in which standardized scaffolds have to be aligned is challenging, and in many cases the alignment is not possible without limitations. Therefore, in the last decades, 3D printing (3DP) or additive manufacturing (AM) of scaffolds has become one of the most innovative approaches in surgery to individualize and improve the treatment of patients. Numerous biocompatible materials are available for 3DP, and various printing techniques can be applied, depending on the process conditions of these materials. Besides these conventional printing techniques, another promising approach in the context of medical AM is 3D bioprinting, a technique which makes it possible to print human cells embedded in special carrier substances to generate functional tissues. Even the direct printing into bone defects or lesions becomes possible. 3DP is already improving the treatment of patients, and has the potential to revolutionize regenerative medicine in future.


Assuntos
Bioimpressão , Regeneração Óssea , Impressão Tridimensional , Alicerces Teciduais , Materiais Biocompatíveis , Humanos
8.
Int J Comput Dent ; 19(4): 293-299, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28008427

RESUMO

The beginnings of three-dimensional (3D) printing and bioprinting can be traced to as early as 1984. From printing inorganic models for the generation of biologic scaffolds, additive manufacturing (AM) developed to the direct printing of organic materials, including specialized tissues, proteins, and cells. In recent years, these technologies have gained significantly in relevance, and there have been several innovations, especially in the field of regenerative medicine. It is becoming increasingly important to consider the economic and social aspects of AM, particularly in education and information of medical human resources, society, and politics, as well as for the establishment of homogenous, globally adapted legal regulations.


Assuntos
Bioimpressão/ética , Bioimpressão/legislação & jurisprudência , Impressão Tridimensional/ética , Impressão Tridimensional/legislação & jurisprudência , História do Século XX , História do Século XXI , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA