RESUMO
Cisplatin (CDDP) is one of the most important chemotherapeutic drugs in modern oncology. However, its use is limited by severe toxicities, which impair life quality after cancer. Here, we investigated the role of organic cation transporters (OCT) in mediating toxicities associated with chronic (twice the week for 4 weeks) low-dose (4 mg/kg body weight) CDDP treatment (resembling therapeutic protocols in patients) of wild-type (WT) mice and mice with OCT genetic deletion (OCT1/2-/-). Functional and molecular analysis showed that OCT1/2-/- mice are partially protected from CDDP-induced nephrotoxicity and peripheral neurotoxicity, whereas ototoxicity was not detectable. Surprisingly, proteomic analysis of the kidneys demonstrated that genetic deletion of OCT1/2 itself was associated with significant changes in expression of proinflammatory and profibrotic proteins which are part of an OCT-associated protein network. This signature directly regulated by OCT consisted of three classes of proteins, viz., profibrotic proteins, proinflammatory proteins, and nutrient sensing molecules. Consistent with functional protection, CDDP-induced proteome changes were more severe in WT mice than in OCT1/2-/- mice. Laser ablation-inductively coupled plasma-mass spectrometry analysis demonstrated that the presence of OCT was not associated with higher renal platinum concentrations. Taken together, these results redefine the role of OCT from passive membrane transporters to active modulators of cell signaling in the kidney.
Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Fator 1 de Transcrição de Octâmero/genética , Transportador 2 de Cátion Orgânico/genética , Animais , Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Nefropatias/induzido quimicamente , Nefropatias/genética , Nefropatias/patologia , Masculino , Camundongos , Camundongos Knockout , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/genética , Fator 1 de Transcrição de Octâmero/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Ototoxicidade/etiologia , Ototoxicidade/genética , Proteômica , Transdução de Sinais/efeitos dos fármacosRESUMO
Cancer treatment with platinum compounds is an important achievement of modern chemotherapy. However, despite the beneficial effects, the clinical impact of these agents is hampered by the development of drug resistance as well as dose-limiting side effects. The efficacy but also side effects of platinum complexes can be mediated by uptake through plasma membrane transporters. In the kidneys, plasma membrane transporters are involved in their secretion into the urine. Renal secretion is accomplished by uptake from the blood into the proximal tubules cells, followed by excretion into the urine. The uptake process is mediated mainly by organic cation transporters (OCT), which are expressed in the basolateral domain of the plasma membrane facing the blood. The excretion of platinum into the urine is mediated by exchange with protons via multidrug and toxin extrusion proteins (MATE) expressed in the apical domain of plasma membrane. Recently, the monofunctional, cationic platinum agent phenanthriplatin, which is able to escape common cellular resistance mechanisms, has been synthesized and investigated. In the present study, the interaction of phenanthriplatin with transporters for organic cations has been evaluated. Phenanthriplatin is a high affinity substrate for OCT2, but has a lower apparent affinity for MATEs. The presence of these transporters increased cytotoxicity of phenanthriplatin. Therefore, phenanthriplatin may be especially effective in the treatment of cancers that express OCTs, such as colon cancer cells. However, the interaction of phenanthriplatin with OCTs suggests that its use as chemotherapeutic agent may be complicated by OCT-mediated toxicity. Unlike cisplatin, phenanthriplatin interacts with high specificity with hMATE1 and hMATE2K in addition to hOCT2. This interaction may facilitate its efflux from the cells and thereby decrease overall efficacy and/or toxicity.