Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934095

RESUMO

Recent droughts have strongly impacted forest ecosystems and are projected to increase in frequency, intensity, and duration in the future together with continued warming. While evidence suggests that tree diversity can regulate drought impacts in natural forests, few studies examine whether mixed tree plantations are more resistant to the impacts of severe droughts. Using natural variations in leaf carbon (C) and nitrogen (N) isotopic ratios, that is δ13C and δ15N, as proxies for drought response, we analyzed the effects of tree species richness on the functional responses of tree plantations to the pan-European 2018 summer drought in seven European tree diversity experiments. We found that leaf δ13C decreased with increasing tree species richness, indicating less drought stress. This effect was not related to drought intensity, nor desiccation tolerance of the tree species. Leaf δ15N increased with drought intensity, indicating a shift toward more open N cycling as water availability diminishes. Additionally, drought intensity was observed to alter the influence of tree species richness on leaf δ15N from weakly negative under low drought intensity to weakly positive under high drought intensity. Overall, our findings suggest that dual leaf isotope analysis helps understand the interaction between drought, nutrients, and species richness.

2.
Sci Rep ; 13(1): 22831, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129474

RESUMO

The tolerance of European alder (Alnus glutinosa Gaertn.) to soil salinity can be attributed to symbiosis with microorganisms at the absorptive root level. However, it is uncertain how soil salinity impacts microbial recruitment in the following growing season. We describe the bacterial and fungal communities in the rhizosphere and endosphere of A. glutinosa absorptive roots at three tested sites with different salinity level. We determined the morphological diversity of ectomycorrhizal (ECM) fungi, the endophytic microbiota in the rhizosphere, and the colonization of new absorptive roots in the following growing season. While bacterial diversity in the rhizosphere was higher than that in the absorptive root endosphere, the opposite was true for fungi. Actinomycetota, Frankiales, Acidothermus sp. and Streptomyces sp. were more abundant in the endosphere than in the rhizosphere, while Actinomycetota and Acidothermus sp. dominated at saline sites compared to nonsaline sites. Basidiomycota, Thelephorales, Russulales, Helotiales, Cortinarius spp. and Lactarius spp. dominated the endosphere, while Ascomycota, Hypocreales and Giberella spp. dominated the rhizosphere. The ECM symbioses formed by Thelephorales (Thelephora, Tomentella spp.) constituted the core community with absorptive roots in the spring and further colonized new root tips during the growing season. With an increase in soil salinity, the overall fungal abundance decreased, and Russula spp. and Cortinarius spp. were not present at all. Similarly, salinity also negatively affected the average length of the absorptive root. In conclusion, the endophytic microbiota in the rhizosphere of A. glutinosa was driven by salinity and season, while the ECM morphotype community was determined by the soil fungal community present during the growing season and renewed in the spring.


Assuntos
Alnus , Basidiomycota , Microbiota , Micorrizas , Alnus/microbiologia , Bactérias , Florestas , Solo , Raízes de Plantas/microbiologia , Microbiologia do Solo
3.
Front Plant Sci ; 14: 1218617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705708

RESUMO

Phosphorus is one of the most important nutrients required for plant growth and development. However, owing to its low availability in the soil, phosphorus is also one of the most difficult elements for plants to acquire. Phosphorus released into the soil from bedrock quickly becomes unavailable to plants, forming poorly soluble complexes. Phosphate-solubilizing bacteria (PSB) can solubilize unavailable phosphorus-containing compounds into forms in which phosphorus is readily available, thus promoting plant growth. In this study, two willow species, Salix dasyclados cv. Loden and Salix schwerinii × Salix viminalis cv. Tora, were inoculated with two selected bacterial strains, Pantoea agglomerans and Paenibacillus spp., to evaluate the plant growth parameters and changes in gene expression in the presence of different concentrations of tricalcium phosphate: 0 mM (NP), 1 mM (LP), and 2 mM (HP). Inoculation with PSB increased root, shoot and leaf biomass, and for the HP treatment, significant changes in growth patterns were observed. However, the growth responses to plant treatments tested depended on the willow species. Analysis of the leaf transcriptomes of the phosphate-solubilizing bacterium-inoculated plants showed a large variation in gene expression between the two willow species. For the Tora willow species, upregulation of genes was observed, particularly for those involved in pathways related to photosynthesis, and this effect was strongly influenced by bacterial phosphate solubilization. The Loden willow species was characterized by a general downregulation of genes involved in pathway activity that included ion transport, transcription regulation and chromosomes. The results obtained in this study provide an improved understanding of the dynamics of Salix growth and gene expression under the influence of PSB, contributing to an increase in yield and phosphorus-use efficiency.

4.
Sci Total Environ ; 857(Pt 3): 159717, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36302436

RESUMO

Litter decomposition is a key ecosystem function in forests and varies in response to a range of climatic, edaphic, and local stand characteristics. Disentangling the relative contribution of these factors is challenging, especially along large environmental gradients. In particular, knowledge of the effect of management options, such as tree planting density and species composition, on litter decomposition would be highly valuable in forestry. In this study, we made use of 15 tree diversity experiments spread over eight countries and three continents within the global TreeDivNet network. We evaluated the effects of overstory composition (tree identity, species/mixture composition and species richness), plantation conditions (density and age), and climate (temperature and precipitation) on mass loss (after 3 months and 1 year) of two standardized litters: high-quality green tea and low-quality rooibos tea. Across continents, we found that early-stage decomposition of the low-quality rooibos tea was influenced locally by overstory tree identity. Mass loss of rooibos litter was higher under young gymnosperm overstories compared to angiosperm overstories, but this trend reversed with age of the experiment. Tree species richness did not influence decomposition and explained almost no variation in our multi-continent dataset. Hence, in the young plantations of our study, overstory composition effects on decomposition were mainly driven by tree species identity on decomposer communities and forest microclimates. After 12 months of incubation, mass loss of the high-quality green tea litter was mainly influenced by temperature whereas the low-quality rooibos tea litter decomposition showed stronger relationships with overstory composition and stand age. Our findings highlight that decomposition dynamics are not only affected by climate but also by management options, via litter quality of the identity of planted trees but also by overstory composition and structure.


Assuntos
Ecossistema , Árvores , Árvores/química , Folhas de Planta , Florestas , Chá , Biodiversidade , Solo/química
5.
Front Microbiol ; 13: 1006722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338053

RESUMO

Phosphorus (P) is an essential plant nutrient that can limit plant growth due to low availability in the soil. P-solubilizing bacteria in the roots and rhizosphere increase the P use efficiency of plants. This study addressed the impact of plant species, the level of plant association with bacteria (rhizosphere or root endophyte) and environmental factors (e.g., seasons, soil properties) on the abundance and diversity of P-solubilizing bacteria in short-rotation coppices (SRC) of willows (Salix spp.) for biomass production. Two willow species (S. dasyclados cv. Loden and S. schwerinii × S. viminalis cv. Tora) grown in mono-and mixed culture plots were examined for the abundance and diversity of bacteria in the root endosphere and rhizosphere during two seasons (fall and spring) in central Sweden and northern Germany. Soil properties, such as pH and available P and N, had a significant effect on the structure of the bacterial community. Microbiome analysis and culture-based methods revealed a higher diversity of rhizospheric bacteria than endophytic bacteria. The P-solubilizing bacterial isolates belonged mainly to Proteobacteria (85%), Actinobacteria (6%) and Firmicutes (9%). Pseudomonas was the most frequently isolated cultivable bacterial genus from both the root endosphere and the rhizosphere. The remaining cultivable bacterial isolates belonged to the phyla Actinobacteria and Firmicutes. In conclusion, site-specific soil conditions and the level of plant association with bacteria were the main factors shaping the bacterial communities in the willow SRCs. In particular, the concentration of available P along with the total nitrogen in the soil controlled the total bacterial diversity in willow SRCs. A lower number of endophytic and rhizospheric bacteria was observed in Loden willow species compared to that of Tora and the mix of the two, indicating that mixed growth of Salix species promotes P-solubilizing bacterial diversity and abundance. Therefore, a mixed plant design was presented as a management option to increase the P availability for Salix in SRCs. This design should be tested for further species mixtures.

6.
Microbiol Resour Announc ; 11(4): e0020722, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35377163

RESUMO

We report the complete genome sequence of the phosphate-solubilizing bacterium Psychrobacillus sp. strain INOP01, isolated from an agricultural field in Rostock, Germany. In addition to its phosphate-solubilizing ability, the genome contains genes coding for proteins involved in phosphate (P) acquisition from various sources.

7.
Front Plant Sci ; 12: 647709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290719

RESUMO

Phosphorus (P) is an essential plant nutrient. Low availability of P in soil is mainly caused by high content of Fe2O3 in the clay fraction that binds to P making it unavailable. Beneficial microbes, such as P solubilizing microorganisms can increase the available P in soil and improve plant growth and productivity. In this study, we evaluated the effects of environmental conditions (climate, soil parameters), plant genotype, and level of plant association (rhizosphere or endophytic root organism) on the abundance and diversity of phosphorus solubilizing microorganisms in a Salix production system. We hypothesized that a lower number of endophytic fungi may possess the ability to solubilize P compared to the number of rhizosphere fungi with the same ability. We also expect that the plant genotype and the experimental site with its environmental conditions will influence fungal diversity. Two Salix genotypes grown in pure and mixed cultures were investigated for their fungal microbiome community and diversity in the rhizosphere and endosphere during two growing seasons. We found that the rhizosphere fungal community was more diverse. A general dominance of Ascomycota (Dothideomycetes) and Basidiomycota (Tremellomycetes) was observed. The classes Agaricomycetes and Pezizomycetes were more frequent in the endosphere, while Tremellomycetes and Mortierellomycetes were more abundant in the rhizosphere. Plot-specific soil properties (pH, total organic carbon, and nitrogen) significantly influenced the fungal community structure. Among the culturable fungal diversities, 10 strains of phosphate solubilizing fungi (PSFs) from roots and 12 strains from rhizosphere soil were identified using selective media supplemented with di-calcium and tri-calcium phosphates. The fungal density and the number of PSF were much higher in the rhizosphere than in the endosphere. Penicillium was the dominant genus of PSF isolated from both sites; other less frequent genera of PSFs were Alternaria, Cladosporium, and Clonostachys. Overall the main factors controlling the fungal communities (endophytic vs. rhizosphere fungi) were the soil properties and level of plant association, while no significant influence of growing season was observed. Differences between Salix genotypes were observed for culturable fungal diversity, while in metagenomic data analysis, only the class Dothideomycetes showed a significant effect from the plant genotype.

8.
Front Fungal Biol ; 2: 671270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744105

RESUMO

Soil fungi are strongly affected by plant species or genotypes since plants modify their surrounding environment, but the effects of plant genotype diversity on fungal diversity and function have not been extensively studied. The interactive responses of fungal community composition to plant genotypic diversity and environmental drivers were investigated in Salix biomass systems, posing questions about: (1) How fungal diversity varies as a function of plant genotype diversity; (2) If plant genotype identity is a strong driver of fungal community composition also in plant mixtures; (3) How the fungal communities change through time (seasonally and interannually)?; and (4) Will the proportion of ECM fungi increase over the rotation? Soil samples were collected over 4 years, starting preplanting from two Salix field trials, including four genotypes with contrasting phenology and functional traits, and genotypes were grown in all possible combinations (four genotypes in Uppsala, Sweden, two in Rostock, Germany). Fungal communities were identified, using Pacific Biosciences sequencing of fungal ITS2 amplicons. We found some site-dependent relationships between fungal community composition and genotype or diversity level, and site accounted for the largest part of the variation in fungal community composition. Rostock had a more homogenous community structure, with significant effects of genotype, diversity level, and the presence of one genotype ("Loden") on fungal community composition. Soil properties and plant and litter traits contributed to explaining the variation in fungal species composition. The within-season variation in composition was of a similar magnitude to the year-to-year variation. The proportion of ECM fungi increased over time irrespective of plant genotype diversity, and, in Uppsala, the 4-mixture showed a weaker response than other combinations. Species richness was generally higher in Uppsala compared with that in Rostock and increased over time, but did not increase with plant genotype diversity. This significant site-specificity underlines the need for consideration of diverse sites to draw general conclusions of temporal variations and functioning of fungal communities. A significant increase in ECM colonization of soil under the pioneer tree Salix on agricultural soils was evident and points to changed litter decomposition and soil carbon dynamics during Salix growth.

9.
iScience ; 23(11): 101647, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33103085

RESUMO

Bioweathering mediated by microorganisms plays a significant role in biogeochemical cycles on global scales over geological timescales. Single processes induced by specific taxa have been described but could rarely be demonstrated for complex communities that dominate whole landscapes. The recently discovered grit crust of the coastal Atacama Desert, which is a transitional community between a cryptogamic ground cover and a rock-bound lithic assemblage, offers the unique chance to elucidate various bioweathering processes that occur simultaneously. Here, we present a bioweathering scenario of this biocenosis including processes such as penetration of the lithomatrix, microbial responses to wet-dry cycles, alkalinolysis, enzyme activity, and mineral re-localization. Frequently occurring fog, for example, led to a volume increase of microorganisms and the lithomatrix. This, together with pH shifts and dust accumulation, consequently results in biophysical breakdown and the formation of a terrestrial protopedon, an initial stage of pedogenesis fueled by the grit crust.

10.
Front Microbiol ; 10: 516, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984121

RESUMO

Solanaceae, comprising meaningful crops (as potato, tomato, pepper, eggplant, and tobacco), can benefit from a symbiosis with arbuscular mycorrhizal fungi (AMF), which improve plant fitness and support plant defense against pathogens. Currently, those crops are likely the most impacted by Potato virus Y (PVY). Unfortunately, the effects of AM symbiosis on the severity of disease induced by PVY in solanaceous crops remain uncertain, partly because the interplay between AMF and PVY is poorly characterized. To shed some light on this issue, available studies on interactions in tripartite association between the host plant, its fungal colonizer, and viral pathogen were analyzed and discussed. Although the best-documented PVY transmission pathway is aphid-dependent, PVY infections are also observed in the absence of insect vector. We hypothesize the existence of an additional pathway for virus transmission involving AMF, in which the common mycorrhizal network (CMN) may act as a potential bridge. Therefore, we reviewed (1) the significance of AM colonization for the course of disease, (2) the potential of AMF networks to act as vectors for PVY, and (3) the consequences for crop breeding and production of AM biofertilizers.

11.
Microb Ecol ; 77(1): 217-229, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29926147

RESUMO

Early successional biological soil crusts (BSCs), a consortium of bacteria, cyanobacteria, and other microalgae, are one of the first settlement stages on temperate coastal sand dunes. In this study, we investigated the algal biomass (Chlorophyll a (Chl a)), algal (Calgal) and microbial carbon (Cmic), elemental stoichiometry (C:N:P), and acid and alkaline phosphatase activity (AcidPA and AlkPA) of two algae-dominated BSCs from a coastal white dune (northeast Germany, on the southwestern Baltic Sea) which differed in the exposure to wind forces. The dune sediment (DS) was generally low in total carbon (TC), nitrogen (TN), and phosphorus (TP). These elements, together with the soil organic matter (SOM) accumulated in the BSC layer and in the sediment underneath (crust sediment CS), leading to initial soil development. The more disturbed BSC (BSC1) exhibited lower algal and microbial biomass and lower Calgal/Cmic ratios than the undisturbed BSC (BSC2). The BSC1 accumulated more organic carbon (OC) than BSC2. However, the OC in the BSC2 was more effectively incorporated into Cmic than in the BSC1, as indicated by lower OC:Cmic ratios. The AcidPA (1.1-1.3 µmol g-1 DM h-1 or 147-178 µg g-1 DM h-1) and AlkPA (2.7-5.5 µmol g-1 DM h-1 or 372-764 µg g-1 DM h-1) were low in both BSCs. The PA, together with the elemental stoichiometry, indicated no P limitation of both BSCs but rather water limitation followed by N limitation for the algae community and a carbon limitation for the microbial community. Our results explain the observed distribution of early successional and more developed BSCs on the sand dune.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Dióxido de Silício/análise , Microbiologia do Solo , Solo/química , Países Bálticos , Biomassa , Carbono , Clorofila A , Sedimentos Geológicos/química , Alemanha , Microbiota , Nitrogênio , Fósforo , Estações do Ano , Água
12.
Front Microbiol ; 10: 2971, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010078

RESUMO

Under the field conditions crop plants interact with diverse microorganisms. These include beneficial (symbiotic) and phytopathogenic microorganisms, which jointly affect growth and productivity of the plants. In last decades, production of potato (Solanum tuberosum L.) suffers from increased incidence of potato virus Y (PVY), which is one of most important potato pests. Arbuscular mycorrhizal fungi (AMF) are common symbionts of potato, however the impact of mycorrhizal symbiosis on the progression of PVY-induced disease is scarcely known. Therefore, in the present study we investigated the effect of joint PVY infection and mycorrhizal colonization by Rhizophagus irregularis on growth traits of the host potato plant (cv. Pirol). The tested PVY isolate belonged to N-Wilga strain group, which is considered to be predominant in Europe and many other parts of the world. The viral particles were concentrated in the leaves, but decreased the root growth. Furthermore, the infection with PVY evoked prolonged oxidative stress reflected by increased level of endogenous H2O2. AMF alleviated oxidative stress in PVY-infected host plants by a substantial decrease in the level of shoot- and root-derived H2O2, but still caused asymptomatic growth depression. It was assumed that mycorrhizal symbiosis of potato might mask infection by PVY in field observations.

13.
Front Microbiol ; 9: 1012, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867898

RESUMO

The roots of Salix spp. can be colonized by two types of mycorrhizal fungi (ectomycorrhizal and arbuscular) and furthermore by dark-septate endophytes. The fungal root colonization is affected by the plant genotype, soil properties and their interactions. However, the impact of host diversity accomplished by mixing different Salix genotypes within the site on root-associated fungi and P-mobilization in the field is not known. It can be hypothesized that mixing of genotypes with strong eco-physiological differences changes the diversity and abundance of root-associated fungi and P-mobilization in the mycorrhizosphere based on different root characteristics. To test this hypothesis, we have studied the mixture of two fundamentally eco-physiologically different Salix genotypes (S. dasyclados cv. 'Loden' and S. schwerinii × S. viminalis cv. 'Tora') compared to plots with pure genotypes in a randomized block design in a field experiment in Northern Germany. We assessed the abundance of mycorrhizal colonization, fungal diversity, fine root density in the soil and activities of hydrolytic enzymes involved in P-mobilization in the mycorrhizosphere in autumn and following spring after three vegetation periods. Mycorrhizal and endophytic diversity was low under all Salix treatments with Laccaria tortilis being the dominating ectomyorrhizal fungal species, and Cadophora and Paraphaeosphaeria spp. being the most common endophytic fungi. Interspecific root competition increased richness and root colonization by endophytic fungi (four taxa in the mixture vs. one found in the pure host genotype cultures) more than by ectomycorrhizal fungi and increased the activities of hydrolytic soil enzymes involved in the P-mineralization (acid phosphatase and ß-glucosidase) in mixed stands. The data suggest selective promotion of endophytic root colonization and changed competition for nutrients by mixture of Salix genotypes.

14.
J Basic Microbiol ; 58(7): 623-632, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29775200

RESUMO

The impact of increasing Cd2+ exposure on the quality and quantity of siderophores produced by a plant growth promoting Pseudomonas fulva strain was tested to gain insight into the degree of change. P. fulva was cultured in the increasing concentrations of Cd2+ (0, 0.5, 1.0, 2.0 mM). The secreted siderophores were separated by HPLC and characterized by UHPLC-QTOF/MS. In the presence of 2 mM Cd2+ synthesis of siderophores (hydroxamates, catecholates, phenolates) was mitigated compared to the treatments with lower concentrations of Cd2+ (0.5 and 1 mM). Increased synthesis of catecholates in 0.5 and 1 mM Cd2+ and of phenolates in 0.5-2 mM Cd2+ was revealed compared to the variant without Cd2+ . Out of seven different hydroxamates, the secretion of ferrioxamine E was significantly decreased in the highest Cd2+ concentration. Two additional ferrioxamines, X2 and D2, were secreted independent of the presence or absence of Cd2+ . Exposure to Cd2+ change the composition of siderophores secreted by P. fulva with selective promotion of catecholates and phenolates at the expense of hydroxamates. Successful adaptation in a Cd-contaminated soil in the frame of practical applications to promote phytoremediation can be assumed.


Assuntos
Cádmio/metabolismo , Desenvolvimento Vegetal , Pseudomonas/fisiologia , Sideróforos/biossíntese , Simbiose , Cádmio/farmacologia , Cromatografia Líquida de Alta Pressão , Pseudomonas/efeitos dos fármacos , Sideróforos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Environ Microbiol Rep ; 10(3): 320-327, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29687664

RESUMO

Phosphorus is one of the most important macronutrient for plants. In agriculture, amending fertilizer with phosphorus (P) is common practice. However, natural phosphorus sources are finite, making research for more sustainable management practices necessary. We postulated that the addition of carbon (C) and nitrogen (N) would stimulate phosphorus mobilization by bacteria because of their desire to maintain a stable intracellular C:N:P stoichiometry. Therefore, we chose a metagenomic approach to investigate two agricultural soils, which only received mineral N fertilizer or mineral N and organic fertilizer for more than 20 years. The most abundant genes involved in the acquisition of external P sources in our study were those involved in solubilization and subsequent uptake of inorganic phosphorus. Independent of site and season, the relative abundance of genes involved in P turnover was not significantly affected by the addition of fertilizers. However, the type of fertilization had a significant impact on the diversity pattern of bacterial families harbouring genes coding for the different P transformation processes. This gives rise to the possibility that fertilizers can substantially change phosphorus turnover efficiency by favouring different families. Additionally, none of the families involved in phosphorus turnover covered all investigated processes. Therefore, promoting bacteria which play an essential role specifically in mobilization of hardly accessible phosphorus could help to secure the phosphorus supply of plants in soils with low P input.


Assuntos
Bactérias/metabolismo , Fósforo/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Transporte Biológico , Carbono/metabolismo , Fertilizantes/classificação , Metagenômica , Nitrogênio/metabolismo
16.
Front Microbiol ; 8: 1485, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848507

RESUMO

In the present study the biodiversity of biological soil crusts (BSCs) formed by phototrophic organisms were investigated on Arctic Svalbard (Norway). These communities exert several important ecological functions and constitute a significant part of vegetation at high latitudes. Non-diatom eukaryotic microalgal species of BSCs from 20 sampling stations around Ny-Ålesund and Longyearbyen were identified by morphology using light microscopy, and the results revealed a high species richness with 102 species in total. 67 taxa belonged to Chlorophyta (31 Chlorophyceae and 36 Trebouxiophyceae), 13 species were Streptophyta (11 Klebsormidiophyceae and two Zygnematophyceae) and 22 species were Ochrophyta (two Eustigmatophyceae and 20 Xanthophyceae). Surprisingly, Klebsormidium strains belonging to clade G (Streptophyta), which were so far described from Southern Africa, could be determined at 5 sampling stations. Furthermore, comparative analyses of Arctic and Antarctic BSCs were undertaken to outline differences in species composition. In addition, a pedological analysis of BSC samples included C, N, S, TP (total phosphorus), and pH measurements to investigate the influence of soil properties on species composition. No significant correlation with these chemical soil parameters was confirmed but the results indicated that pH might affect the BSCs. In addition, a statistically significant influence of precipitation on species composition was determined. Consequently, water availability was identified as one key driver for BSC biodiversity in Arctic regions.

17.
J Biotechnol ; 257: 22-34, 2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28755910

RESUMO

We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram+: gram- bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour.


Assuntos
Meio Ambiente , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Microbiologia do Solo , Vicia/genética , Vicia/microbiologia , Agrobacterium , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Ecologia , Ácidos Graxos/análise , Fungos/classificação , Fungos/genética , Regulação da Expressão Gênica de Plantas , Micorrizas/classificação , Peptídeo Sintases/genética , Fosfolipídeos/análise , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rhizobium/classificação , Rizosfera , Medição de Risco , Sensibilidade e Especificidade , Solo/química , Esporos Fúngicos , Simbiose , Vicia/metabolismo
18.
J Biotechnol ; 243: 48-60, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28011129

RESUMO

We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram+: gram- bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour.


Assuntos
Meio Ambiente , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Microbiologia do Solo , Vicia/genética , Vicia/microbiologia , Agrobacterium , Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Regulação da Expressão Gênica de Plantas , Modelos Genéticos , Micorrizas/classificação , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rhizobium/classificação , Esporos Fúngicos , Simbiose , Vicia/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-26305901

RESUMO

The addition of wood chips as a co-substrate can promote the degradation of oil in soil. Therefore, in the present study, the tree species-specific impact of wood chips of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and Western balsam poplar (Populus trichocarpa L.) on the degradation of crude oil was tested in beach sand in a 4-week incubation experiment. The CO2-C release increased in the order of control without wood chips < +spruce < +pine < +poplar. Initial and final hydrocarbon concentrations (C10 to C40), as indicators for the oil degradation, were determined with gas chromatography-flame ionization detection (GC-FID). The degradation increased for the light fraction (C10 to C22), the heavy fraction (C23 to C40) as well as the whole range (C10 to C40) in the order of control without wood chips (f(degrad.) = 23% vs. 0% vs. 12%) < +poplar (f(degrad.) = 49% vs. 19% vs. 36%) < +spruce (f(degrad.) = 55% vs. 34% vs. 46%) < +pine (f(degrad.) = 60% vs. 44% vs. 53%), whereas the heavy fraction was less degraded in comparison to the light fraction. It can be concluded, that the tree species-specific wood quality is a significant control of the impact on the degradation of hydrocarbons, and pine wood chips might be promising, possibly caused by their lower decomposability and lower substrate replacement than the other wood species.


Assuntos
Petróleo/metabolismo , Árvores/classificação , Madeira/química , Carbono/análise , Hidrocarbonetos/análise , Nitrogênio/análise , Picea/metabolismo , Pinus sylvestris/metabolismo , Solo/química , Enxofre/análise
20.
J Plant Nutr Soil Sci (1999) ; 178(1): 43-88, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26167132

RESUMO

Phosphorus (P) is an indispensable element for all life on Earth and, during the past decade, concerns about the future of its global supply have stimulated much research on soil P and method development. This review provides an overview of advanced state-of-the-art methods currently used in soil P research. These involve bulk and spatially resolved spectroscopic and spectrometric P speciation methods (1 and 2D NMR, IR, Raman, Q-TOF MS/MS, high resolution-MS, NanoSIMS, XRF, XPS, (µ)XAS) as well as methods for assessing soil P reactions (sorption isotherms, quantum-chemical modeling, microbial biomass P, enzymes activity, DGT, 33P isotopic exchange, 18O isotope ratios). Required experimental set-ups and the potentials and limitations of individual methods present a guide for the selection of most suitable methods or combinations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA