Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(22)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38860680

RESUMO

This paper evaluates the accuracy of the Hermitian form of the downfolding procedure using the double unitary coupled cluster (DUCC) ansatz on the benchmark systems of linear chains of hydrogen atoms, H6 and H8. The computational infrastructure employs the occupation-number-representation codes to construct the matrix representation of arbitrary second-quantized operators, allowing for the exact representation of exponentials of various operators. The tests demonstrate that external amplitudes from standard single-reference coupled cluster methods that sufficiently describe external (out-of-active-space) correlations reliably parameterize the Hermitian downfolded effective Hamiltonians in the DUCC formalism. The results show that this approach can overcome the problems associated with losing the variational character of corresponding energies in the corresponding SR-CC theories.

2.
J Chem Theory Comput ; 20(3): 1214-1227, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38291561

RESUMO

Polariton chemistry has attracted great attention as a potential route to modify chemical structure, properties, and reactivity through strong interactions among molecular electronic, vibrational, or rovibrational degrees of freedom. A rigorous theoretical treatment of molecular polaritons requires the treatment of matter and photon degrees of freedom on equal quantum mechanical footing. In the limit of molecular electronic strong or ultrastrong coupling to one or a few molecules, it is desirable to treat the molecular electronic degrees of freedom using the tools of ab initio quantum chemistry, yielding an approach we refer to as ab initio cavity quantum electrodynamics, where the photon degrees of freedom are treated at the level of cavity quantum electrodynamics. Here, we present an approach called Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction theory to provide ground- and excited-state polaritonic surfaces with a balanced description of strong correlation effects among electronic and photonic degrees of freedom. This method provides a platform for ab initio cavity quantum electrodynamics when both strong electron correlation and strong light-matter coupling are important and is an important step toward computational approaches that yield multiple polaritonic potential energy surfaces and couplings that can be leveraged for ab initio molecular dynamics simulations of polariton chemistry.

3.
Phys Rev Lett ; 131(20): 200601, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38039464

RESUMO

We conducted quantum simulations of strongly correlated systems using the quantum flow (QFlow) approach, which enables sampling large subspaces of the Hilbert space through coupled variational problems in reduced dimensionality active spaces. Our QFlow algorithms significantly reduce circuit complexity and pave the way for scalable and constant-circuit-depth quantum computing. Our simulations show that QFlow can optimize the collective number of wave function parameters without increasing the required qubits using active spaces having an order of magnitude fewer number of parameters.

4.
J Chem Theory Comput ; 19(20): 7077-7096, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37458314

RESUMO

This paper summarizes developments in the NWChem computational chemistry suite since the last major release (NWChem 7.0.0). Specifically, we focus on functionality, along with input blocks, that is accessible in the current stable release (NWChem 7.2.0) and in the "master" development branch, interfaces to quantum computing simulators, interfaces to external libraries, the NWChem github repository, and containerization of NWChem executable images. Some ongoing developments that will be available in the near future are also discussed.

5.
J Chem Phys ; 159(2)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37428065

RESUMO

Tensor algebra operations such as contractions in computational chemistry consume a significant fraction of the computing time on large-scale computing platforms. The widespread use of tensor contractions between large multi-dimensional tensors in describing electronic structure theory has motivated the development of multiple tensor algebra frameworks targeting heterogeneous computing platforms. In this paper, we present Tensor Algebra for Many-body Methods (TAMM), a framework for productive and performance-portable development of scalable computational chemistry methods. TAMM decouples the specification of the computation from the execution of these operations on available high-performance computing systems. With this design choice, the scientific application developers (domain scientists) can focus on the algorithmic requirements using the tensor algebra interface provided by TAMM, whereas high-performance computing developers can direct their attention to various optimizations on the underlying constructs, such as efficient data distribution, optimized scheduling algorithms, and efficient use of intra-node resources (e.g., graphics processing units). The modular structure of TAMM allows it to support different hardware architectures and incorporate new algorithmic advances. We describe the TAMM framework and our approach to the sustainable development of scalable ground- and excited-state electronic structure methods. We present case studies highlighting the ease of use, including the performance and productivity gains compared to other frameworks.

6.
J Chem Theory Comput ; 19(8): 2248-2257, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37096369

RESUMO

We report the implementation of the real-time equation-of-motion coupled-cluster (RT-EOM-CC) cumulant Green's function method [ J. Chem. Phys. 2020, 152, 174113] within the Tensor Algebra for Many-body Methods (TAMM) infrastructure. TAMM is a massively parallel heterogeneous tensor library designed for utilizing forthcoming exascale computing resources. The two-body electron repulsion matrix elements are Cholesky-decomposed, and we imposed spin-explicit forms of the various operators when evaluating the tensor contractions. Unlike our previous real algebra Tensor Contraction Engine (TCE) implementation, the TAMM implementation supports fully complex algebra. The RT-EOM-CC singles (S) and doubles (D) time-dependent amplitudes are propagated using a first-order Adams-Moulton method. This new implementation shows excellent scalability tested up to 500 GPUs using the Zn-porphyrin molecule with 655 basis functions, with parallel efficiencies above 90% up to 400 GPUs. The TAMM RT-EOM-CCSD was used to study core photoemission spectra in the formaldehyde and ethyl trifluoroacetate (ESCA) molecules. Simulations of the latter involve as many as 71 occupied and 649 virtual orbitals. The relative quasiparticle ionization energies and overall spectral functions agree well with available experimental results.

7.
J Chem Theory Comput ; 18(11): 6567-6576, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36201845

RESUMO

While quantum algorithms for simulations exhibit better asymptotic scaling than their classical counterparts, they currently cannot be accurately implemented on real-world devices. Instead, chemists and computer scientists rely on costly classical simulations of these quantum algorithms. In particular, the quantum phase estimation (QPE) algorithm is among several approaches that has attracted much attention in recent years due to its genuine quantum character. However, it is memory-intensive to simulate and intractable for moderate system sizes. This paper discusses the performance and applicability of QPESIM, a new simulation of the QPE algorithm designed to take advantage of modest computational resources. In particular, we demonstrate the versatility of QPESIM in simulating various electronic states by examining the ground and core-level states of H2O. For these states, we also discuss the effect of the active-space size on the quality of the calculated energies. For the high-energy core-level states, we demonstrate that new QPE simulations for active spaces defined by 15 active orbitals significantly reduce the errors in core-level excitation energies compared to earlier QPE simulations using smaller active spaces.

8.
J Chem Phys ; 157(4): 044101, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35922363

RESUMO

Newly developed coupled-cluster (CC) methods enable simulations of ionization potentials and spectral functions of molecular systems in a wide range of energy scales ranging from core-binding to valence. This paper discusses the results obtained with the real-time equation-of-motion CC cumulant (RT-EOM-CC) approach and CC Green's function (CCGF) approaches in applications to the water and water dimer molecules. We compare the ionization potentials obtained with these methods for the valence region with the results obtained with the coupled-cluster with singles, doubles, and perturbative triples formulation as a difference of energies for N and N - 1 electron systems. All methods show good agreement with each other. They also agree well with the experiment with errors usually below 0.1 eV for the ionization potentials. We also analyze unique features of the spectral functions, associated with the position of satellite peaks, obtained with the RT-EOM-CC and CCGF methods employing single and double excitations, as a function of the monomer OH bond length and the proton transfer coordinate in the dimer. Finally, we analyze the impact of the basis set effects on the quality of calculated ionization potentials and find that the basis set effects are less pronounced for the augmented-type sets.

9.
J Chem Phys ; 156(9): 094106, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35259890

RESUMO

Downfolding coupled cluster techniques have recently been introduced into quantum chemistry as a tool for the dimensionality reduction of the many-body quantum problem. As opposed to earlier formulations in physics and chemistry based on the concept of effective Hamiltonians, the appearance of the downfolded Hamiltonians is a natural consequence of the single-reference exponential parameterization of the wave function. In this paper, we discuss the impact of higher-order terms originating in double commutators. In analogy to previous studies, we consider the case when only one- and two-body interactions are included in the downfolded Hamiltonians. We demonstrate the efficiency of the many-body expansions involving single and double commutators for the unitary extension of the downfolded Hamiltonians on the example of the beryllium atom, and bond-breaking processes in the Li2 and H2O molecules. For the H2O system, we also analyze energies obtained with downfolding procedures as functions of the active space size.

10.
Front Chem ; 9: 603019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816434

RESUMO

For many-body methods such as MCSCF and CASSCF, in which the number of one-electron orbitals is optimized and independent of the basis set used, there are no problems with using plane-wave basis sets. However, for methods currently used in quantum computing such as select configuration interaction (CI) and coupled cluster (CC) methods, it is necessary to have a virtual space that is able to capture a significant amount of electron-electron correlation in the system. The virtual orbitals in a pseudopotential plane-wave Hartree-Fock calculation, because of Coulomb repulsion, are often scattering states that interact very weakly with the filled orbitals. As a result, very little correlation energy is captured from them. The use of virtual spaces derived from the one-electron operators has also been tried, and while some correlations are captured, the amount is quite low. To overcome these limitations, we have been developing new classes of algorithms to define virtual spaces by optimizing orbitals from small pairwise CI Hamiltonians, which we term as correlation optimized virtual orbitals with the abbreviation COVOs. With these procedures, we have been able to derive virtual spaces, containing only a few orbitals, which are able to capture a significant amount of correlation. The focus in this manuscript is on using these derived basis sets to target full CI (FCI) quality results for H2 on near-term quantum computers. However, the initial results for this approach were promising. We were able to obtain good agreement with FCI/cc-pVTZ results for this system with just 4 virtual orbitals, using both FCI and quantum simulations. The quality of the results using COVOs suggests that it may be possible to use them in other many-body approaches, including coupled cluster and Møller-Plesset perturbation theories, and open up the door to many-body calculations for pseudopotential plane-wave basis set methods.

11.
Chem Rev ; 121(8): 4962-4998, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33788546

RESUMO

Since the advent of the first computers, chemists have been at the forefront of using computers to understand and solve complex chemical problems. As the hardware and software have evolved, so have the theoretical and computational chemistry methods and algorithms. Parallel computers clearly changed the common computing paradigm in the late 1970s and 80s, and the field has again seen a paradigm shift with the advent of graphical processing units. This review explores the challenges and some of the solutions in transforming software from the terascale to the petascale and now to the upcoming exascale computers. While discussing the field in general, NWChem and its redesign, NWChemEx, will be highlighted as one of the early codesign projects to take advantage of massively parallel computers and emerging software standards to enable large scientific challenges to be tackled.

12.
J Chem Theory Comput ; 17(1): 201-210, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33332965

RESUMO

This paper explores the utility of the quantum phase estimation (QPE) algorithm in calculating high-energy excited states characterized by the promotion of electrons occupying core-level shells. These states have been intensively studied over the last few decades, especially in supporting the experimental effort at light sources. Results obtained with QPE are compared with various high-accuracy many-body techniques developed to describe core-level states. The feasibility of the quantum phase estimator in identifying classes of challenging shake-up states characterized by the presence of higher-order excitation effects is discussed. We also demonstrate the utility of the QPE algorithm in targeting excitations from specific centers in a molecule. Lastly, we discuss how the lowest-order Trotter formula can be applied to reducing the complexity of the ansatz without affecting the error.

13.
J Chem Phys ; 153(23): 234103, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33353328

RESUMO

A full configuration interaction calculation (FCI) ultimately defines the innate molecular orbital description of a molecule. Its density matrix and the natural orbitals obtained from it quantify the difference between having N-dominantly occupied orbitals in a reference determinant for a wavefunction to describe N-correlated electrons and how many of those N-electrons are left to the remaining virtual orbitals. The latter provides a measure of the multi-determinantal character (MDC) required to be in a wavefunction. MDC is further split into a weak correlation part and a part that indicates stronger correlation often called multi-reference character (MRC). If several virtual orbitals have high occupation numbers, then one might argue that these additional orbitals should be allowed to have a larger role in the calculation, as in MR methods, such as MCSCF, MR-CI, or MR-coupled-cluster (MR-CC), to provide adequate approximations toward the FCI. However, there are problems with any of these MR methods that complicate the calculations compared to the uniformity and ease of application of single-reference CC calculations (SR-CC) and their operationally single-reference equation-of-motion (EOM-CC) extensions. As SR-CC theory is used in most of today's "predictive" calculations, an assessment of the accuracy of SR-CC at some truncation of the cluster operator would help to quantify how large an issue MRC actually is in a calculation, and how it might be alleviated while retaining the convenient SR computational character of CC/EOM-CC. This paper defines indices that identify MRC situations and help assess how reliable a given calculation is.

14.
J Chem Theory Comput ; 16(10): 6165-6175, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32915568

RESUMO

Applications of quantum simulation algorithms to obtain electronic energies of molecules on noisy intermediate-scale quantum (NISQ) devices require careful consideration of resources describing the complex electron correlation effects. In modeling second-quantized problems, the biggest challenge confronted is that the number of qubits scales linearly with the size of the molecular basis. This poses a significant limitation on the size of the basis sets and the number of correlated electrons included in quantum simulations of chemical processes. To address this issue and enable more realistic simulations on NISQ computers, we employ the double unitary coupled-cluster (DUCC) method to effectively downfold correlation effects into the reduced-size orbital space, commonly referred to as the active space. Using downfolding techniques, we demonstrate that properly constructed effective Hamiltonians can capture the effect of the whole orbital space in small-size active spaces. Combining the downfolding preprocessing technique with the variational quantum eigensolver, we solve for the ground-state energy of H2, Li2, and BeH2 in the cc-pVTZ basis using the DUCC-reduced active spaces. We compare these results to full configuration-interaction and high-level coupled-cluster reference calculations.

16.
J Chem Phys ; 152(24): 244127, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32610963

RESUMO

In this paper, we discuss extending the sub-system embedding sub-algebra coupled cluster formalism and the double unitary coupled cluster (DUCC) ansatz to the time domain. An important part of the analysis is associated with proving the exactness of the DUCC ansatz based on the general many-body form of anti-Hermitian cluster operators defining external and internal excitations. Using these formalisms, it is possible to calculate the energy of the entire system as an eigenvalue of downfolded/effective Hamiltonian in the active space, which is identifiable with the sub-system of the composite system. It can also be shown that downfolded Hamiltonians integrate out Fermionic degrees of freedom that do not correspond to the physics encapsulated by the active space. In this paper, we extend these results to the time-dependent Schrödinger equation, showing that a similar construct is possible to partition a system into a sub-system that varies slowly in time and a remaining sub-system that corresponds to fast oscillations. This time-dependent formalism allows coupled cluster quantum dynamics to be extended to larger systems and for the formulation of novel quantum algorithms based on the quantum Lanczos approach, which has recently been considered in the literature.

17.
J Chem Phys ; 151(23): 234114, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864245

RESUMO

Many-body techniques based on the double unitary coupled cluster (DUCC) ansatz can be used to downfold electronic Hamiltonians into low-dimensional active spaces. It can be shown that the resulting dimensionality reduced Hamiltonians are amenable for quantum computing. Recent studies performed for several benchmark systems using phase estimation (PE) algorithms for quantum computers demonstrated that these formulations can recover a significant portion of ground-state dynamical correlation effects that stem from the electron excitations outside of the active space. These results have also been confirmed in studies of ground-state potential energy surfaces using quantum simulators. In this letter, we study the effectiveness of the DUCC formalism in describing excited states. We also emphasize the role of the PE formalism and its stochastic nature in discovering/identifying excited states or excited-state processes in situations when the knowledge about the true configurational structure of a sought after excited state is limited or postulated (due to the specific physics driving excited-state processes of interest). In this context, we can view PE algorithms as an engine for verifying various hypotheses for excited-state processes and providing statistically meaningful results that correspond to the electronic state(s) with the largest overlap with a postulated configurational structure. We illustrate these ideas on examples of strongly correlated molecular systems, characterized by small energy gaps and high density of quasidegenerate states around the Fermi level.

18.
J Chem Phys ; 151(1): 014107, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31272173

RESUMO

In this paper, we discuss the extension of the recently introduced subsystem embedding subalgebra coupled cluster (SES-CC) formalism to unitary CC formalisms. In analogy to the standard single-reference SES-CC formalism, its unitary CC extension allows one to include the dynamical (outside the active space) correlation effects in an SES induced complete active space (CAS) effective Hamiltonian. In contrast to the standard single-reference SES-CC theory, the unitary CC approach results in a Hermitian form of the effective Hamiltonian. Additionally, for the double unitary CC (DUCC) formalism, the corresponding CAS eigenvalue problem provides a rigorous separation of external cluster amplitudes that describe dynamical correlation effects-used to define the effective Hamiltonian-from those corresponding to the internal (inside the active space) excitations that define the components of eigenvectors associated with the energy of the entire system. The proposed formalism can be viewed as an efficient way of downfolding many-electron Hamiltonian to the low-energy model represented by a particular choice of CAS. In principle, this technique can be extended to any type of CAS representing an arbitrary energy window of a quantum system. The Hermitian character of low-dimensional effective Hamiltonians makes them an ideal target for several types of full configuration interaction type eigensolvers. As an example, we also discuss the algebraic form of the perturbative expansions of the effective DUCC Hamiltonians corresponding to composite unitary CC theories and discuss possible algorithms for hybrid classical and quantum computing. Given growing interest in quantum computing, we provide energies for H2 and Be systems obtained with the quantum phase estimator algorithm available in the Quantum Development Kit for the approximate DUCC Hamiltonians.

19.
J Phys Chem A ; 122(5): 1350-1368, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29286672

RESUMO

The performance of coupled-cluster approaches with higher-than-doubly excited clusters, including the CCSD(T), CCSD(2)T, CR-CC(2,3), CCSD(TQ), and CR-CC(2,4) corrections to CCSD, the active-space CCSDt, CCSDtq, and CCSDTq methods, and the CC(t;3), CC(t,q;3), CC(t,q;3,4), and CC(q;4) corrections to CCSDt, CCSDtq, and CCSDTq resulting from the CC(P;Q) formalism, in reproducing the CCSDT and CCSDTQ potential energy curves and vibrational term values characterizing Be2 in its electronic ground state is assessed. The correlation-consistent aug-cc-pVnZ and aug-cc-pCVnZ (n = T and Q) basis sets are employed. Among the CCSD-based corrections, the completely renormalized CR-CC(2,3) and CR-CC(2,4) approaches perform the best. The CC(t;3), CC(t,q;3), CC(t,q;3,4), and CC(q;4) methods, especially CC(t;3) and CC(q;4), outperform other employed approaches in reproducing the CCSDT and CCSDTQ data. Composite schemes combining the all-electron CCSDT calculations extrapolated to the complete basis set limit with the frozen-core CC(q;4) and CCSDTQ computations using the aug-cc-pVTZ basis to account for connected quadruple excitations reproduce the latest experimental vibrational spectrum of Be2 to within 4-5 cm-1, when the vibrational spacings are examined, with typical errors being below 1-2 cm-1. The resulting binding energies and equilibrium bond lengths agree with their experimentally derived counterparts to within ∼10 cm-1 and 0.01 Å.

20.
J Chem Phys ; 145(8): 084306, 2016 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-27586921

RESUMO

We use the scalar relativistic ionized equation-of-motion coupled-cluster (IP-EOMCC) approaches to investigate the photoelectron spectrum of Ag3 (-), examining the effects of basis set, number of correlated electrons, level of applied theory including up to 3-hole-2-particle terms, and geometry relaxation. By employing an IP-EOMCC-based extrapolation scheme, we are able to provide an accurate interpretation and complete assignment of peaks and other key features in the experimentally observed spectra, including electron binding energies as high as about 6.5 eV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA