Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 13(17)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28244215

RESUMO

In order to mimic cell organelles, artificial nanoreactors have been investigated based on polymeric vesicles with reconstituted channel proteins (outer membrane protein F) and coencapsulated enzymes horseradish peroxidase (HRP) along with a crowding agent (Ficoll or polyethylene glycol) inside the cavity. Importantly, the presence of macromolecules has a strong impact on the enzyme kinetics, but no influence on the integrity of vesicles up to certain concentrations. This particular design allows for the first time the determination of HRP kinetics inside nanoreactors with crowded milieu. The values of the Michaelis-Menten constant (K m ) measured for HRP in a confined space (encapsulated in nanoreactors) in the absence of macromolecules are ≈50% lower than in free conditions, and the presence of a crowding agent results in a further pronounced decrease. These results clearly suggest that activities of enzymes in confined spaces can be tuned by varying the concentrations of crowding compounds. The present investigation represents an advance in nanoreactor design by considering the influence of environmental factors on enzymatic performance, and it demonstrates that both encapsulation and the presence of a crowding environment increase the enzyme-substrate affinity.


Assuntos
Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Cinética
2.
Biomacromolecules ; 15(9): 3235-45, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25068477

RESUMO

A series of poly(dimethysiloxane)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMS-b-PDMAEMA) block copolymers were synthesized with atom transfer radical polymerization (ATRP). In aqueous solution the polymers self-assembled into micelles with diameters between 80 and 300 nm, with the ability to encapsulate DOX. The polymer with the shortest PDMAEMA block (5 units) displayed excellent cell viability, while micelles containing longer PDMAEMA block lengths (13 and 22 units) led to increased cytotoxicity. The carriers released DOX in response to a decrease in pH from 7.4 to 5.5. Confocal laser scanning microscopy (CLSM) revealed that nanoparticles were taken up by endocytosis into acidic cell compartments. Furthermore, DOX-loaded nanocarriers exhibited intracellular pH-response as changes in cell morphology and drug release were observed within 24 h.


Assuntos
Antibióticos Antineoplásicos , Dimetilpolisiloxanos , Doxorrubicina , Portadores de Fármacos , Metacrilatos , Micelas , Nanopartículas/química , Nylons , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacocinética , Dimetilpolisiloxanos/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Endocitose/efeitos dos fármacos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Metacrilatos/química , Metacrilatos/farmacocinética , Metacrilatos/farmacologia , Nylons/química , Nylons/farmacocinética , Nylons/farmacologia
3.
J Phys Chem B ; 118(31): 9361-70, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25045828

RESUMO

Stimulus-sensitive systems at the nanoscale represent ideal candidates for improving therapeutic and diagnostic approaches by producing rapid responses to the presence of specific molecules or conditions either by changing properties or by acting "on demand". Here we introduce an optimized light-sensitive nanoreactor based on encapsulation of a photosensitizer inside polymer vesicles to serve as an efficient source of reactive oxygen species (ROS) "on demand". Two types of amphiphilic block copolymers, poly(2-methyloxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyloxazoline), PMOXA-PDMS-PMOXA, and poly(N-vinylpyrrolidone)-block-poly(dimethylsiloxane)-block-poly(N-vinylpyrrolidone), PNVP-PDMS-PNVP, were used to encapsulate Rose Bengal-bovine serum albumin (RB-BSA) inside the cavity of vesicles. The difference of copolymers molecular properties (hydrophobic to hydrophilic ratio, different chemical nature of the hydrophilic block) influenced the encapsulation ability, and uptake by cells, allowing therefore a selection of the most efficient polymer system. Nanoreactors were optimized in terms of (i) size, (ii) stability, and (iii) encapsulation efficiency based on a combination of light scattering, TEM, and UV-vis spectroscopy. By illumination, encapsulated RB-BSA conjugates generated in situ ROS, which diffused through the polymer membrane to the environment of the vesicles, as proved by electron spin resonance spectroscopy (ESR). Optimum illumination conditions were obtained based on the effect of the illumination time on the amount of ROS produced in situ by the encapsulated RB-BSA conjugates. ROS diffusion monitored by ESR was dependent on the molecular weight of copolymer that influences the thickness of the polymer membrane. Upon uptake into HeLa cells our nontoxic nanoreactors acted as a Trojan horse: they produced illumination-controlled ROS in sufficient amounts to induce cell death under photodynamic therapy (PDT) conditions. Straightforward production, stability, and Trojan horse activity inside cells support our light-sensitive nanoreactors for medical applications which require ROS to be generated with precise time and space control.


Assuntos
Nanoestruturas/química , Polímeros/química , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Preparações de Ação Retardada/química , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Luz , Microscopia Eletrônica de Transmissão , Oxazóis/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/química , Rosa Bengala/química , Espalhamento de Radiação , Soroalbumina Bovina/química , Análise Espectral
4.
Biomacromolecules ; 15(4): 1469-75, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24650106

RESUMO

Laccases (Lac) are oxidizing enzymes with a broad range of applications, for example, in soil remediation, as bleaching agent in the textile industry, and for cosmetics. Protecting the enzyme against degradation and inhibition is of great importance for many of these applications. Polymer vesicles (polymersomes) from poly(N-vinylpyrrolidone)-block-poly(dimethylsiloxane)-block-poly(N-vinylpyrrolidone) (PNVP-b-PDMS-b-PNVP) triblock copolymers were prepared and investigated as intrinsically semipermeable nanoreactors for Lac. The block copolymers allow oxygen to enter and reactive oxygen species (ROS) to leave the polymersomes. EPR spectroscopy proved that Lac can generate ROS. They could diffuse out of the polymersome and oxidize an aromatic substrate outside the vesicles. Michaelis-Menten constants Km between 60 and 143 µM and turn over numbers kcat of 0.11 to 0.18 s(-1) were determined for Lac in the nanoreactors. The molecular weight and the PDMS-to-PNVP ratio of the block copolymers influenced these apparent Michaelis-Menten parameters. Encapsulation of Lac in the polymersomes significantly protected the enzyme against enzymatic degradation and against small inhibitors: proteinase K caused 90% less degradation and the inhibitor sodium azide did not affect the enzyme's activity. Therefore, these polymer nanoreactors are an effective means to stabilize laccase.


Assuntos
Lacase/química , Lacase/metabolismo , Nanotecnologia/métodos , Povidona/análogos & derivados , Siloxanas/química , Espectroscopia de Ressonância de Spin Eletrônica , Endopeptidase K/metabolismo , Estabilidade Enzimática , Interações Hidrofóbicas e Hidrofílicas , Lacase/antagonistas & inibidores , Peso Molecular , Oxigênio/metabolismo , Povidona/síntese química , Povidona/química , Espécies Reativas de Oxigênio/metabolismo , Siloxanas/síntese química , Azida Sódica/metabolismo , Azida Sódica/farmacologia
5.
Langmuir ; 30(4): 965-75, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24422910

RESUMO

In modern medicine, effective protein therapy is a major challenge to which a significant contribution can be expected from nanoscience through the development of novel delivery systems. Here we present the effect of the amine content of nanoparticles based on PEGylated chitosan Bombyx mori (PEG-O-ChsBm) copolymers on the entrapment of molecules in a search for highly efficient nanocarriers. PEG-O-ChsBm copolymers were synthesized with amine contents from 1.12% to 0.70%, and nanoparticles were generated by self-assembly in dilute aqueous solutions. These nanoparticles successfully entrapped molecules with a wide range of sizes, the efficiency of which was dependent on their amine contents. While hydrophobic molecules were entrapped with high efficiency in all types of nanoparticle, hydrophilic molecules were entrapped only in those with low amine content. Bovine serum albumin, selected as a model protein, was entrapped in nanoparticles and efficiently released in acidic conditions. The triggered entrapment of molecules in PEG-O-ChsBm nanoparticles by selection of the appropriate amine content represents a straightforward way to modulate their delivery by fine changes in the properties of nanocarriers.


Assuntos
Aminas/química , Quitosana/química , Portadores de Fármacos , Nanopartículas/química , Polietilenoglicóis/química , Animais , Bombyx/química , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Quitosana/isolamento & purificação , Composição de Medicamentos , Corantes Fluorescentes , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacologia
6.
Chem Commun (Camb) ; 50(20): 2642-5, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24469110

RESUMO

Membrane proteins have been reconstituted on lipid bilayers with zero mean-curvature (cubic phases or vesicles). Here we show that reconstitution of pore-forming membrane proteins can also occur on highly curved lipidic bilayers of reverse hexagonal mesophases, for which the mean-curvature is significantly different from zero. We further show that the membrane protein provides unique topological interconnectivities between the aqueous nanochannels, significantly enhancing mesophase transport properties.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Modelos Biológicos , Porinas/química , Transporte Biológico , Água/química
7.
Inorg Chem ; 52(21): 12535-44, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24127683

RESUMO

Transition metal complexes with substituted phenanthrolines as ligands represent potential anticancer products without the drawbacks of platinum complexes that are currently marketed. Here, we report the synthesis and cell selective anticancer activity of five new water-soluble Co(III) complexes with methyl substituted phenanthroline ligands. The complexes were characterized by elemental analysis, NMR, FAB-mass spectrometry, FTIR, electronic spectroscopy, and single crystal X-ray diffraction. Possible interaction of these complexes with DNA was assessed by a combination of circular dichroism, UV-vis spectroscopy titration, and ethidium bromide displacement assay, and the results indicated that DNA interaction is weak for these complexes. Cellular uptake and cytotoxicity of complexes at low concentrations were assessed by flow cytometry on PC-3 cells, while their effect on intracellular mitochondrial function was measured by MTS assay on HeLa and PC-3 cell lines. These complexes showed selective cytotoxicity with a significantly higher effect on intracellular mitochondrial function in PC-3 cells than in HeLa cells. At low concentrations, complex 2 had the highest cytotoxic effect on PC-3 cells, inducing around 38% cell death, and the correlation of cytotoxicity of these complexes to their hydrophobicity indicates that an appropriate value of the hydrophobicity is essential for high antitumor activity.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cobalto/química , Fenantrolinas/química , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , DNA/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Mitocôndrias/efeitos dos fármacos , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Fenantrolinas/farmacologia , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Água
8.
Nanoscale ; 5(1): 217-24, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23154601

RESUMO

Various domains present the challenges of responding to stimuli in a specific manner, with the desired sensitivity or functionality, and only when required. Stimuli-responsive systems that are appropriately designed can effectively meet these challenges. Here, we introduce nanoreactors that encapsulate photosensitizer-protein conjugates in polymer vesicles as a source of "on demand" reactive oxygen species. Vesicles made of poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline) successfully encapsulated the photosensitizer Rose Bengal-bovine serum albumin conjugate (RB-BSA) during a self-assembly process, as demonstrated by UV-Vis spectroscopy. A combination of light scattering and transmission electron microscopy indicated that the nanoreactors are stable over time. They serve a dual role: protecting the photosensitizer in the inner cavity and producing in situ reactive oxygen species (ROS) upon irradiation with appropriate electromagnetic radiation. Illumination with appropriate wavelength light allows us to switch on/off and to control the production of ROS. Because of the oxygen-permeable nature of the polymer membrane of vesicles, ROS escape into the environment around vesicles, as established by electron paramagnetic resonance. The light-sensitive nanoreactor is taken up by HeLa cells in a Trojan horse fashion: it is nontoxic and, when irradiated with the appropriate laser light, produces ROS that induce cell death in a precise area corresponding to the irradiation zone. These nanoreactors can be used in theranostic approaches because they can be detected via the fluorescent photosensitizer signal and simultaneously produce ROS efficiently "on demand".


Assuntos
Nanotecnologia/instrumentação , Fotobiorreatores , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/síntese química , Soroalbumina Bovina/química , Soroalbumina Bovina/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Fármacos Fotossensibilizantes/efeitos da radiação
9.
Acc Chem Res ; 44(10): 1039-49, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21608994

RESUMO

One strategy in modern medicine is the development of new platforms that combine multifunctional compounds with stable, safe carriers in patient-oriented therapeutic strategies. The simultaneous detection and treatment of pathological events through interactions manipulated at the molecular level offer treatment strategies that can decrease side effects resulting from conventional therapeutic approaches. Several types of nanocarriers have been proposed for biomedical purposes, including inorganic nanoparticles, lipid aggregates, including liposomes, and synthetic polymeric systems, such as vesicles, micelles, or nanotubes. Polymeric vesicles--structures similar to lipid vesicles but created using synthetic block copolymers--represent an excellent candidate for new nanocarriers for medical applications. These structures are more stable than liposomes but retain their low immunogenicity. Significant efforts have been made to improve the size, membrane flexibility, and permeability of polymeric vesicles and to enhance their target specificity. The optimization of these properties will allow researchers to design smart compartments that can co-encapsulate sensitive molecules, such as RNA, enzymes, and proteins, and their membranes allow insertion of membrane proteins rather than simply serving as passive carriers. In this Account, we illustrate the advances that are shifting these molecular systems from simple polymeric carriers to smart-complex protein-polymer assemblies, such as nanoreactors or synthetic organelles. Polymeric vesicles generated by the self-assembly of amphiphilic copolymers (polymersomes) offer the advantage of simultaneous encapsulation of hydrophilic compounds in their aqueous cavities and the insertion of fragile, hydrophobic compounds in their membranes. This strategy has permitted us and others to design and develop new systems such as nanoreactors and artificial organelles in which active compounds are simultaneously protected and allowed to act in situ. In recent years, we have created a variety of multifunctional, proteinpolymersomes combinations for biomedical applications. The insertion of membrane proteins or biopores into the polymer membrane supported the activity of co-encapsulated enzymes that act in tandem inside the cavity or of combinations of drugs and imaging agents. Surface functionalization of these nanocarriers permitted specific targeting of the desired biological compartments. Polymeric vesicles alone are relatively easy to prepare and functionalize. Those features, along with their stability and multifunctionality, promote their use in the development of new theranostic strategies. The combination of polymer vesicles and biological entities will serve as tools to improve the observation and treatment of pathological events and the overall condition of the patient.


Assuntos
Biomimética/métodos , Portadores de Fármacos/química , Nanomedicina/métodos , Nanoestruturas/química , Organelas/metabolismo , Polímeros/química , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/toxicidade , Humanos , Nanoestruturas/toxicidade , Polímeros/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA