Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(44): 27121-27127, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36342321

RESUMO

During the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light-matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process. Here, we demonstrate that by analyzing photoelectron angular emission distributions and kinetic energy release of charge states of ionic molecular fragments, we can obtain a detailed understanding of the charge-up and fragmentation dynamics. Our novel approach allows for gathering such information without the need of complex ab initio modeling. As an example, we provide a detailed view on the processes happening on a femtosecond time scale in oxygen molecules exposed to intense XFEL pulses.

2.
Science ; 369(6511): 1630-1633, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32973029

RESUMO

Addressing the ultrafast coherent evolution of electronic wave functions has long been a goal of nonlinear x-ray physics. A first step toward this goal is the investigation of stimulated x-ray Raman scattering (SXRS) using intense pulses from an x-ray free-electron laser. Earlier SXRS experiments relied on signal amplification during pulse propagation through dense resonant media. By contrast, our method reveals the fundamental process in which photons from the primary radiation source directly interact with a single atom. We introduce an experimental protocol in which scattered neutral atoms rather than scattered photons are detected. We present SXRS measurements at the neon K edge and a quantitative theoretical analysis. The method should become a powerful tool in the exploration of nonlinear x-ray physics.

3.
Phys Rev Lett ; 121(10): 103002, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30240272

RESUMO

The role of the nuclear degrees of freedom in nonlinear two-photon single ionization of H_{2} molecules interacting with short and intense vacuum ultraviolet pulses is investigated, both experimentally and theoretically, by selecting single resonant vibronic intermediate neutral states. This high selectivity relies on the narrow bandwidth and tunability of the pulses generated at the FERMI free-electron laser. A sustained enhancement of dissociative ionization, which even exceeds nondissociative ionization, is observed and controlled as one selects progressively higher vibronic states. With the help of ab initio calculations for increasing pulse durations, the photoelectron and ion energy spectra obtained with velocity map imaging allow us to identify new photoionization pathways. With pulses of the order of 100 fs, the experiment probes a timescale that lies between that of ultrafast dynamical processes and that of steady state excitations.

4.
Rev Sci Instrum ; 89(5): 052401, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864823

RESUMO

Electron beam driven ionization can produce highly charged ions (HCIs) in a few well-defined charge states. Ideal conditions for this are maximally focused electron beams and an extremely clean vacuum environment. A cryogenic electron beam ion trap fulfills these prerequisites and delivers very pure HCI beams. The Canadian rare isotope facility with electron beam ion source-electron beam ion sources developed at the Max-Planck-Institut für Kernphysik (MPIK) reaches already for a 5 keV electron beam and a current of 1 A with a density in excess of 5000 A/cm2 by means of a 6 T axial magnetic field. Within the trap, the beam quickly generates a dense HCI population, tightly confined by a space-charge potential of the order of 1 keV times the ionic charge state. Emitting HCI bunches of ≈107 ions at up to 100 Hz repetition rate, the device will charge-breed rare-isotope beams with the mass-over-charge ratio required for re-acceleration at the Advanced Rare IsotopE Laboratory (ARIEL) facility at TRIUMF. We present here its design and results from commissioning runs at MPIK, including X-ray diagnostics of the electron beam and charge-breeding process, as well as ion injection and HCI-extraction measurements.

5.
Rev Sci Instrum ; 86(10): 103111, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26520944

RESUMO

Preparing highly charged ions (HCIs) in a cold and strongly localized state is of particular interest for frequency metrology and tests of possible spatial and temporal variations of the fine structure constant. Our versatile preparation technique is based on the generic modular combination of a pulsed ion source with a cryogenic linear Paul trap. Both instruments are connected by a compact beamline with deceleration and precooling properties. We present its design and commissioning experiments regarding these two functionalities. A pulsed buncher tube allows for the deceleration and longitudinal phase-space compression of the ion pulses. External injection of slow HCIs, specifically Ar(13+), into the linear Paul trap and their subsequent retrapping in the absence of sympathetic cooling is demonstrated. The latter proved to be a necessary prerequisite for the multi-pass stopping of HCIs in continuously laser-cooled Be(+) Coulomb crystals.

6.
Science ; 347(6227): 1233-6, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25766230

RESUMO

Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically (40)Ar(13+)) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be(+) ions. We also demonstrate cooling of a single Ar(13+) ion by a single Be(+) ion-the prerequisite for quantum logic spectroscopy with a potential 10(-19) accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy.

7.
Rev Sci Instrum ; 85(2): 02B701, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593600

RESUMO

An electron-beam ion trap (EBIT) charge breeder is being brought into operation at the National Superconducting Cyclotron Laboratory at Michigan State University. The EBIT is part of the ReA post-accelerator for reacceleration of rare isotopes, which are thermalized in a gas "stopping" cell after being produced at high energy by projectile fragmentation. The ReA EBIT has a distinctive design; it is characterized by a high-current electron gun and a two-field superconducting magnet to optimize the capture and charge-breeding efficiency of continuously injected singly charged ion beams. Following a brief overview of the reaccelerator system and the ReA EBIT, this paper presents the latest commissioning results, particularly, charge breeding and reacceleration of the highly charged rare isotopes, (76)Ga(24 +, 25 +).

8.
Rev Sci Instrum ; 85(2): 02B705, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593604

RESUMO

The Electron Beam Ion Trap (EBIT) in NSCL's reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT's superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm(2) has been reached when the EBIT magnet was operated at 4 T.

9.
Phys Rev Lett ; 105(18): 183001, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21231102

RESUMO

Photoionization (PI) of Fe14+ in the range from 450 to 1100 eV was measured at the BESSY II storage ring using an electron beam ion trap achieving high target-ion area densities of 10(10) cm(-2). Photoabsorption by this ion is observed in astrophysical spectra and plasmas, but until now cross sections and resonance energies could only be provided by calculations. We reach a resolving power E/ΔE of at least 6500, outstanding in the present energy range, which enables benchmarking and improving the most advanced theories for PI of ions in high charge states.

10.
Rev Sci Instrum ; 78(12): 123105, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18163718

RESUMO

A compact flat-field soft x-ray grazing-incidence grating spectrometer equipped with a cryogenically cooled back-illuminated charge-coupled device camera was built and implemented at the Heidelberg Electron Beam Ion Trap. The instrument spans the spectral region from 1 to 37 nm using two different gratings. In slitless operation mode, it directly images a radiation source, in this case ions confined in an electron beam ion trap, with high efficiency and reaching hereby a resolving power of lambda/Deltalambda approximately =130 at 2 nm and of lambda/Deltalambda approximately =600 at 28 nm. Capable of automatized operation, its low noise and excellent stability make it an ideal instrument not only for spectroscopic diagnostics requiring wide spectral coverage but also for precision wavelength measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA