Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
iScience ; 27(5): 109765, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38736546

RESUMO

Non-coding variants located within regulatory elements may alter gene expression by modifying transcription factor (TF) binding sites, thereby leading to functional consequences. Different TF models are being used to assess the effect of DNA sequence variants, such as single nucleotide variants (SNVs). Often existing methods are slow and do not assess statistical significance of results. We investigated the distribution of absolute maximal differential TF binding scores for general computational models that affect TF binding. We find that a modified Laplace distribution can adequately approximate the empirical distributions. A benchmark on in vitro and in vivo datasets showed that our approach improves upon an existing method in terms of performance and speed. Applications on eQTLs and on a genome-wide association study illustrate the usefulness of our statistics by highlighting cell type-specific regulators and target genes. An implementation of our approach is freely available on GitHub and as bioconda package.

2.
Hum Genomics ; 17(1): 69, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491351

RESUMO

BACKGROUND: Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Genome-wide association studies (GWAS) have identified many single nucleotide polymorphisms (SNPs) appearing in non-coding genomic regions in CVDs. The SNPs may alter gene expression by modifying transcription factor (TF) binding sites and lead to functional consequences in cardiovascular traits or diseases. To understand the underlying molecular mechanisms, it is crucial to identify which variations are involved and how they affect TF binding. METHODS: The SNEEP (SNP exploration and analysis using epigenomics data) pipeline was used to identify regulatory SNPs, which alter the binding behavior of TFs and link GWAS SNPs to their potential target genes for six CVDs. The human-induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs), monoculture cardiac organoids (MCOs) and self-organized cardiac organoids (SCOs) were used in the study. Gene expression, cardiomyocyte size and cardiac contractility were assessed. RESULTS: By using our integrative computational pipeline, we identified 1905 regulatory SNPs in CVD GWAS data. These were associated with hundreds of genes, half of them non-coding RNAs (ncRNAs), suggesting novel CVD genes. We experimentally tested 40 CVD-associated non-coding RNAs, among them RP11-98F14.11, RPL23AP92, IGBP1P1, and CTD-2383I20.1, which were upregulated in hiPSC-CMs, MCOs and SCOs under hypoxic conditions. Further experiments showed that IGBP1P1 depletion rescued expression of hypertrophic marker genes, reduced hypoxia-induced cardiomyocyte size and improved hypoxia-reduced cardiac contractility in hiPSC-CMs and MCOs. CONCLUSIONS: IGBP1P1 is a novel ncRNA with key regulatory functions in modulating cardiomyocyte size and cardiac function in our disease models. Our data suggest ncRNA IGBP1P1 as a potential therapeutic target to improve cardiac function in CVDs.


Assuntos
Doenças Cardiovasculares , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Estudo de Associação Genômica Ampla , Doenças Cardiovasculares/genética , Genômica , Genoma
3.
Cell Rep ; 42(8): 112824, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37481725

RESUMO

Circular RNAs are generated by backsplicing and control cellular signaling and phenotypes. Pericytes stabilize capillary structures and play important roles in the formation and maintenance of blood vessels. Here, we characterize hypoxia-regulated circular RNAs (circRNAs) in human pericytes and show that the circular RNA of procollagen-lysine,2-oxoglutarate 5-dioxygenase-2 (circPLOD2) is induced by hypoxia and regulates pericyte functions. Silencing of circPLOD2 affects pericytes and increases proliferation, migration, and secretion of soluble angiogenic proteins, thereby enhancing endothelial migration and network capability. Transcriptional and epigenomic profiling of circPLOD2-depleted cells reveals widespread changes in gene expression and identifies the transcription factor krüppel-like factor 4 (KLF4) as a key effector of the circPLOD2-mediated changes. KLF4 depletion mimics circPLOD2 silencing, whereas KLF4 overexpression reverses the effects of circPLOD2 depletion on proliferation and endothelial-pericyte interactions. Together, these data reveal an important function of circPLOD2 in controlling pericyte proliferation and capillary formation and show that the circPLOD2-mediated regulation of KLF4 significantly contributes to the transcriptional response to hypoxia.


Assuntos
Pericitos , RNA Circular , Humanos , Hipóxia/metabolismo , Pericitos/metabolismo , RNA Circular/genética , RNA Circular/metabolismo
4.
Nat Commun ; 13(1): 7444, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460641

RESUMO

Mechanisms by which specific histone modifications regulate distinct gene networks remain little understood. We investigated how H3K79me2, a modification catalyzed by DOT1L and previously considered a general transcriptional activation mark, regulates gene expression during cardiogenesis. Embryonic cardiomyocyte ablation of Dot1l revealed that H3K79me2 does not act as a general transcriptional activator, but rather regulates highly specific transcriptional networks at two critical cardiogenic junctures: embryonic cardiogenesis, where it was particularly important for left ventricle-specific genes, and postnatal cardiomyocyte cell cycle withdrawal, with Dot1L mutants having more mononuclear cardiomyocytes and prolonged cardiomyocyte cell cycle activity. Mechanistic analyses revealed that H3K79me2 in two distinct domains, gene bodies and regulatory elements, synergized to promote expression of genes activated by DOT1L. Surprisingly, H3K79me2 in specific regulatory elements also contributed to silencing genes usually not expressed in cardiomyocytes. These results reveal mechanisms by which DOT1L successively regulates left ventricle specification and cardiomyocyte cell cycle withdrawal.


Assuntos
Redes Reguladoras de Genes , Miócitos Cardíacos , Divisão Celular , Ciclo Celular/genética , Ventrículos do Coração
5.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37132521

RESUMO

BACKGROUND: Eukaryotic gene expression is controlled by cis-regulatory elements (CREs), including promoters and enhancers, which are bound by transcription factors (TFs). Differential expression of TFs and their binding affinity at putative CREs determine tissue- and developmental-specific transcriptional activity. Consolidating genomic datasets can offer further insights into the accessibility of CREs, TF activity, and, thus, gene regulation. However, the integration and analysis of multimodal datasets are hampered by considerable technical challenges. While methods for highlighting differential TF activity from combined chromatin state data (e.g., chromatin immunoprecipitation [ChIP], ATAC, or DNase sequencing) and RNA sequencing data exist, they do not offer convenient usability, have limited support for large-scale data processing, and provide only minimal functionality for visually interpreting results. RESULTS: We developed TF-Prioritizer, an automated pipeline that prioritizes condition-specific TFs from multimodal data and generates an interactive web report. We demonstrated its potential by identifying known TFs along with their target genes, as well as previously unreported TFs active in lactating mouse mammary glands. Additionally, we studied a variety of ENCODE datasets for cell lines K562 and MCF-7, including 12 histone modification ChIP sequencing as well as ATAC and DNase sequencing datasets, where we observe and discuss assay-specific differences. CONCLUSION: TF-Prioritizer accepts ATAC, DNase, or ChIP sequencing and RNA sequencing data as input and identifies TFs with differential activity, thus offering an understanding of genome-wide gene regulation, potential pathogenesis, and therapeutic targets in biomedical research.


Assuntos
Lactação , Fatores de Transcrição , Animais , Camundongos , Feminino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Indonésia , Sítios de Ligação/genética , Desoxirribonucleases/metabolismo
6.
Nucleic Acids Res ; 49(18): 10397-10418, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34508352

RESUMO

Understanding how epigenetic variation in non-coding regions is involved in distal gene-expression regulation is an important problem. Regulatory regions can be associated to genes using large-scale datasets of epigenetic and expression data. However, for regions of complex epigenomic signals and enhancers that regulate many genes, it is difficult to understand these associations. We present StitchIt, an approach to dissect epigenetic variation in a gene-specific manner for the detection of regulatory elements (REMs) without relying on peak calls in individual samples. StitchIt segments epigenetic signal tracks over many samples to generate the location and the target genes of a REM simultaneously. We show that this approach leads to a more accurate and refined REM detection compared to standard methods even on heterogeneous datasets, which are challenging to model. Also, StitchIt REMs are highly enriched in experimentally determined chromatin interactions and expression quantitative trait loci. We validated several newly predicted REMs using CRISPR-Cas9 experiments, thereby demonstrating the reliability of StitchIt. StitchIt is able to dissect regulation in superenhancers and predicts thousands of putative REMs that go unnoticed using peak-based approaches suggesting that a large part of the regulome might be uncharted water.


Assuntos
Cromatina/metabolismo , Análise de Dados , Elementos Facilitadores Genéticos , Epigênese Genética , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos
7.
Biol Chem ; 402(8): 973-982, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-33660495

RESUMO

Genome-wide CRISPR screens are becoming more widespread and allow the simultaneous interrogation of thousands of genomic regions. Although recent progress has been made in the analysis of CRISPR screens, it is still an open problem how to interpret CRISPR mutations in non-coding regions of the genome. Most of the tools concentrate on the interpretation of mutations introduced in gene coding regions. We introduce a computational pipeline that uses epigenomic information about regulatory elements for the interpretation of CRISPR mutations in non-coding regions. We illustrate our analysis protocol on the analysis of a genome-wide CRISPR screen in hTERT-RPE1 cells and reveal novel regulatory elements that mediate chemoresistance against doxorubicin in these cells. We infer links to established and to novel chemoresistance genes. Our analysis protocol is general and can be applied on any cell type and with different CRISPR enzymes.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genômica
8.
Nat Commun ; 12(1): 681, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514719

RESUMO

Endothelial cells play a critical role in the adaptation of tissues to injury. Tissue ischemia induced by infarction leads to profound changes in endothelial cell functions and can induce transition to a mesenchymal state. Here we explore the kinetics and individual cellular responses of endothelial cells after myocardial infarction by using single cell RNA sequencing. This study demonstrates a time dependent switch in endothelial cell proliferation and inflammation associated with transient changes in metabolic gene signatures. Trajectory analysis reveals that the majority of endothelial cells 3 to 7 days after myocardial infarction acquire a transient state, characterized by mesenchymal gene expression, which returns to baseline 14 days after injury. Lineage tracing, using the Cdh5-CreERT2;mT/mG mice followed by single cell RNA sequencing, confirms the transient mesenchymal transition and reveals additional hypoxic and inflammatory signatures of endothelial cells during early and late states after injury. These data suggest that endothelial cells undergo a transient mes-enchymal activation concomitant with a metabolic adaptation within the first days after myocardial infarction but do not acquire a long-term mesenchymal fate. This mesenchymal activation may facilitate endothelial cell migration and clonal expansion to regenerate the vascular network.


Assuntos
Endotélio/patologia , Transição Epitelial-Mesenquimal/genética , Infarto do Miocárdio/patologia , Miocárdio/patologia , Animais , Movimento Celular/genética , Plasticidade Celular/genética , Proliferação de Células/genética , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Endotélio/citologia , Genes Reporter/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/citologia , RNA-Seq , Análise de Célula Única
9.
Nucleic Acids Res ; 48(W1): W193-W199, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32459338

RESUMO

A current challenge in genomics is to interpret non-coding regions and their role in transcriptional regulation of possibly distant target genes. Genome-wide association studies show that a large part of genomic variants are found in those non-coding regions, but their mechanisms of gene regulation are often unknown. An additional challenge is to reliably identify the target genes of the regulatory regions, which is an essential step in understanding their impact on gene expression. Here we present the EpiRegio web server, a resource of regulatory elements (REMs). REMs are genomic regions that exhibit variations in their chromatin accessibility profile associated with changes in expression of their target genes. EpiRegio incorporates both epigenomic and gene expression data for various human primary cell types and tissues, providing an integrated view of REMs in the genome. Our web server allows the analysis of genes and their associated REMs, including the REM's activity and its estimated cell type-specific contribution to its target gene's expression. Further, it is possible to explore genomic regions for their regulatory potential, investigate overlapping REMs and by that the dissection of regions of large epigenomic complexity. EpiRegio allows programmatic access through a REST API and is freely available at https://epiregio.de/.


Assuntos
Elementos Reguladores de Transcrição , Software , Sequenciamento de Cromatina por Imunoprecipitação , Doença/genética , Regulação da Expressão Gênica , Humanos , Fatores de Transcrição/metabolismo
10.
Bioinformatics ; 36(6): 1655-1662, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31742324

RESUMO

MOTIVATION: A central aim of molecular biology is to identify mechanisms of transcriptional regulation. Transcription factors (TFs), which are DNA-binding proteins, are highly involved in these processes, thus a crucial information is to know where TFs interact with DNA and to be aware of the TFs' DNA-binding motifs. For that reason, computational tools exist that link DNA-binding motifs to TFs either without sequence information or based on TF-associated sequences, e.g. identified via a chromatin immunoprecipitation followed by sequencing (ChIP-seq) experiment.In this paper, we present MASSIF, a novel method to improve the performance of existing tools that link motifs to TFs relying on TF-associated sequences. MASSIF is based on the idea that a DNA-binding motif, which is correctly linked to a TF, should be assigned to a DNA-binding domain (DBD) similar to that of the mapped TF. Because DNA-binding motifs are in general not linked to DBDs, it is not possible to compare the DBD of a TF and the motif directly. Instead we created a DBD collection, which consist of TFs with a known DBD and an associated motif. This collection enables us to evaluate how likely it is that a linked motif and a TF of interest are associated to the same DBD. We named this similarity measure domain score, and represent it as a P-value. We developed two different ways to improve the performance of existing tools that link motifs to TFs based on TF-associated sequences: (i) using meta-analysis to combine P-values from one or several of these tools with the P-value of the domain score and (ii) filter unlikely motifs based on the domain score. RESULTS: We demonstrate the functionality of MASSIF on several human ChIP-seq datasets, using either motifs from the HOCOMOCO database or de novo identified ones as input motifs. In addition, we show that both variants of our method improve the performance of tools that link motifs to TFs based on TF-associated sequences significantly independent of the considered DBD type. AVAILABILITY AND IMPLEMENTATION: MASSIF is freely available online at https://github.com/SchulzLab/MASSIF. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Sítios de Ligação , Imunoprecipitação da Cromatina , Biologia Computacional , Motivos de Nucleotídeos , Ligação Proteica , Análise de Sequência de DNA
11.
Bioinformatics ; 35(9): 1608-1609, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30304373

RESUMO

SUMMARY: Prediction of transcription factor (TF) binding from epigenetics data and integrative analysis thereof are challenging. Here, we present TEPIC 2 a framework allowing for fast, accurate and versatile prediction, and analysis of TF binding from epigenetics data: it supports 30 species with binding motifs, computes TF gene and scores up to two orders of magnitude faster than before due to improved implementation, and offers easy-to-use machine learning pipelines for integrated analysis of TF binding predictions with gene expression data allowing the identification of important TFs. AVAILABILITY AND IMPLEMENTATION: TEPIC is implemented in C++, R, and Python. It is freely available at https://github.com/SchulzLab/TEPIC and can be used on Linux based systems. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Epigenômica , Animais , Sítios de Ligação , Humanos , Camundongos , Ligação Proteica , Fatores de Transcrição , Triazinas
12.
Bioinformatics ; 32(12): 1888-90, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153685

RESUMO

UNLABELLED: In medical research, it is crucial to understand the functional consequences of genetic alterations, for example, non-synonymous single nucleotide variants (nsSNVs). NsSNVs are known to be causative for several human diseases. However, the genetic basis of complex disorders such as diabetes or cancer comprises multiple factors. Methods to analyze putative synergetic effects of multiple such factors, however, are limited. Here, we concentrate on nsSNVs and present BALL-SNPgp, a tool for structural and functional characterization of nsSNVs, which is aimed to improve pathogenicity assessment in computational diagnostics. Based on annotated SNV data, BALL-SNPgp creates a three-dimensional visualization of the encoded protein, collects available information from different resources concerning disease relevance and other functional annotations, performs cluster analysis, predicts putative binding pockets and provides data on known interaction sites. AVAILABILITY AND IMPLEMENTATION: BALL-SNPgp is based on the comprehensive C ++ framework Biochemical Algorithms Library (BALL) and its visualization front-end BALLView. Our tool is available at www.ccb.uni-saarland.de/BALL-SNPgp CONTACT: ballsnp@milaman.cs.uni-saarland.de.


Assuntos
Biblioteca Gênica , Variação Genética , Técnicas de Diagnóstico Molecular , Polimorfismo de Nucleotídeo Único , Algoritmos , Humanos , Estrutura Terciária de Proteína , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA