Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Public Health ; 11: 979225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992891

RESUMO

Introduction: Social robots are accompanied by high expectations of what they can bring to society and in the healthcare sector. So far, promising assumptions have been presented about how and where social robots are most relevant. We know that the industry has used robots for a long time, but what about social uptake outside industry, specifically, in the healthcare sector? This study discusses what trends are discernible, to better understand the gap between technology readiness and adoption of interactive robots in the welfare and health sectors in Europe. Methods: An assessment of interactive robot applications at the upper levels of the Technology Readiness Level scale is combined with an assessment of adoption potential based on Rogers' theory of diffusion of innovation. Most robot solutions are dedicated to individual rehabilitation or frailty and stress. Fewer solutions are developed for managing welfare services or public healthcare. Results: The results show that while robots are ready from the technological point of view, most of the applications had a low score for demand according to the stakeholders. Discussion: To enhance social uptake, a more initiated discussion, and more studies on the connections between technology readiness and adoption and use are suggested. Applications being available to users does not mean they have an advantage over previous solutions. Acceptance of robots is also heavily dependent on the impact of regulations as part of the welfare and healthcare sectors in Europe.


Assuntos
Robótica , Robótica/métodos , Tecnologia , Europa (Continente)
2.
J Neuroeng Rehabil ; 16(1): 85, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31296226

RESUMO

BACKGROUND: We present a robot-assisted telerehabilitation system that allows for haptic interaction between therapist and patient over distance. It consists of two arm therapy robots. Attached to one robot the therapists can feel on their own arm the limitations of the patient's arm which is attached to the other robot. Due to the exoskeleton structure of the robot, movements can be performed in the three-dimensional space. METHODS: Fifteen physical and occupational therapists tested this strategy, named "Beam-Me-In", while using an exoskeleton robot connected to a second exoskeleton robot in the same room used by the study experimenter. Furthermore, the therapists assessed the level of impairment of recorded and simulated arm movements. They quantified four typical impairments of stroke patients: reduced range of motion (active and passive), resistance to passive movement, a lack of ability to fractionate a movement, and disturbed quality of movement. RESULTS: On a Likert Scale (0 to 5 points) therapists rated the "Beam-Me-In" strategy as a very useful medium (mode: 4 points) to evaluate a patient's progress over time. The passive range of motion of the elbow joint was assessed with a mean absolute error of 4.9∘ (absolute precision error: 6.4∘). The active range of motion of the elbow was assessed with a mean absolute error of 4.9∘ (absolute precision error: 6.5∘). The resistance to passive movement (i.e. modified Tardieu Scale) and the lack of ability to fractionate a movement (i.e. quantification of pathological muscle synergies) was assessed with an inter-rater reliability of 0.930 and 0.948, respectively. CONCLUSIONS: The "Beam-Me-In" strategy is a promising approach to complement robot-assisted movement training. It can serve as a platform to assess and identify abnormal movement patterns in patients. This is the first application of remote three-dimensional haptic assessmen t applied to telerehabilitation. Furthermore, the "Beam-Me-In" strategy has a potential to overcome barriers for therapists regarding robot-assisted telerehabilitation.


Assuntos
Exoesqueleto Energizado , Robótica/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Telerreabilitação/métodos , Humanos , Reprodutibilidade dos Testes , Robótica/instrumentação , Reabilitação do Acidente Vascular Cerebral/instrumentação , Telerreabilitação/instrumentação
3.
J Neuroeng Rehabil ; 15(1): 107, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30454009

RESUMO

BACKGROUND: Multiplayer games have emerged as a promising approach to increase the motivation of patients involved in rehabilitation therapy. In this systematic review, we evaluated recent publications in health-related multiplayer games that involved patients with cognitive and/or motor impairments. The aim was to investigate the effect of multiplayer gaming on game experience and game performance in healthy and non-healthy populations in comparison to individual game play. We further discuss the publications within the context of the theory of flow and the challenge point framework. METHODS: A systematic search was conducted through EMBASE, Medline, PubMed, Cochrane, CINAHL and PsycINFO. The search was complemented by recent publications in robot-assisted multiplayer neurorehabilitation. The search was restricted to robot-assisted or virtual reality-based training. RESULTS: Thirteen articles met the inclusion criteria. Multiplayer modes used in health-related multiplayer games were: competitive, collaborative and co-active multiplayer modes. Multiplayer modes positively affected game experience in nine studies and game performance in six studies. Two articles reported increased game performance in single-player mode when compared to multiplayer mode. CONCLUSIONS: The multiplayer modes of training reviewed improved game experience and game performance compared to single-player modes. However, the methods reviewed were quite heterogeneous and not exhaustive. One important take-away is that adaptation of the game conditions can individualize the difficulty of a game to a player's skill level in competitive multiplayer games. Robotic assistance and virtual reality can enhance individualization by, for example, adapting the haptic conditions, e.g. by increasing haptic support or by providing haptic resistance. The flow theory and the challenge point framework support these results and are used in this review to frame the idea of adapting players' game conditions.


Assuntos
Reabilitação Neurológica , Robótica , Jogos de Vídeo , Terapia de Exposição à Realidade Virtual , Humanos , Reabilitação Neurológica/métodos , Reabilitação Neurológica/tendências , Robótica/métodos , Robótica/tendências , Jogos de Vídeo/psicologia , Jogos de Vídeo/tendências , Terapia de Exposição à Realidade Virtual/métodos , Terapia de Exposição à Realidade Virtual/tendências
4.
J Neuroeng Rehabil ; 15(1): 79, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115082

RESUMO

BACKGROUND: Robots have been successfully applied in motor training during neurorehabilitation. As music is known to improve motor function and motivation in neurorehabilitation training, we aimed at integrating music creation into robotic-assisted motor therapy. We developed a virtual game-like environment with music for the arm therapy robot ARMin, containing four different motion training conditions: a condition promoting creativity (C+) and one not promoting creativity (C-), each in a condition with (V+) and without (V-) a visual display (i.e., a monitor). The visual display was presenting the game workspace but not contributing to the creative process itself. In all four conditions the therapy robot haptically displayed the game workspace. Our aim was to asses the effects of creativity and visual display on motivation. METHODS: In a prospective randomized single-center study, healthy participants were randomly assigned to play two of the four training conditions, either with (V+) or without visual display (V-). In the third round, the participants played a repetition of the preferred condition of the two first rounds, this time with a new V condition (i.e., with or without visual display). For each of the three rounds, motivation was measured with the Intrinsic Motivation Inventory (IMI) in the subscales interest/enjoyment, perceived choice, value/usefulness, and man-machine-relation. We recorded the actual training time, the time of free movement, and the velocity profile and administered a questionnaire to measure perceived training time and perceived effort. All measures were analysed using linear mixed models. Furthermore, we asked if the participants would like to receive the created music piece. RESULTS: Sixteen healthy subjects (ten males, six females, mean age: 27.2 years, standard deviation: 4.1 years) with no known motor or cognitive deficit participated. Promotion of creativity (i.e., C+ instead of C-) significantly increased the IMI-item interest/enjoyment (p=0.001) and the IMI-item perceived choice (p=0.010). We found no significant effects in the IMI-items man-machine relation and value/usefulness. Conditions promoting creativity (with or without visual display) were preferred compared to the ones not promoting creativity. An interaction effect of promotion of creativity and omission of visual display was present for training time (p=0.013) and training intensity (p<0.001). No differences in relative perceived training time, perceived effort, and perceived value among the four training conditions were found. CONCLUSIONS: Promoting creativity in a visuo-audio-haptic or audio-haptic environment increases motivation in robot-assisted therapy. We demonstrated the feasibility of performing an audio-haptic music creation task and recommend to try the system on patients with neuromuscular disorders. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02720341. Registered 25 March 2016, https://clinicaltrials.gov/ct2/show/NCT02720341.


Assuntos
Motivação , Música , Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Reabilitação do Acidente Vascular Cerebral/psicologia , Adulto , Terapia por Exercício/instrumentação , Terapia por Exercício/métodos , Terapia por Exercício/psicologia , Exoesqueleto Energizado , Feminino , Humanos , Masculino , Movimento , Estudos Prospectivos , Robótica , Inquéritos e Questionários , Adulto Jovem
5.
PLoS One ; 13(1): e0189275, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293512

RESUMO

BACKGROUND: Goal-directed reaching for real-world objects by humans is enabled through visual depth cues. In virtual environments, the number and quality of available visual depth cues is limited, which may affect reaching performance and quality of reaching movements. METHODS: We assessed three-dimensional reaching movements in five experimental groups each with ten healthy volunteers. Three groups used a two-dimensional computer screen and two groups used a head-mounted display. The first screen group received the typically recreated visual depth cues, such as aerial and linear perspective, occlusion, shadows, and texture gradients. The second screen group received an abstract minimal rendering lacking those. The third screen group received the cues of the first screen group and absolute depth cues enabled by retinal image size of a known object, which realized with visual renderings of the handheld device and a ghost handheld at the target location. The two head-mounted display groups received the same virtually recreated visual depth cues as the second or the third screen group respectively. Additionally, they could rely on stereopsis and motion parallax due to head-movements. RESULTS AND CONCLUSION: All groups using the screen performed significantly worse than both groups using the head-mounted display in terms of completion time normalized by the straight-line distance to the target. Both groups using the head-mounted display achieved the optimal minimum in number of speed peaks and in hand path ratio, indicating that our subjects performed natural movements when using a head-mounted display. Virtually recreated visual depth cues had a minor impact on reaching performance. Only the screen group with rendered handhelds could outperform the other screen groups. Thus, if reaching performance in virtual environments is in the main scope of a study, we suggest applying a head-mounted display. Otherwise, when two-dimensional screens are used, achievable performance is likely limited by the reduced depth perception and not just by subjects' motor skills.


Assuntos
Sinais (Psicologia) , Percepção de Profundidade , Mãos/fisiologia , Realidade Virtual , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Modelos Lineares , Masculino , Desempenho Psicomotor , Análise e Desempenho de Tarefas
6.
IEEE Int Conf Rehabil Robot ; 2017: 876-881, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28813931

RESUMO

Multiplayer environments are thought to increase the training intensity in robot-aided rehabilitation therapy after stroke. We developed a haptic-based environment to investigate the dynamics of two-player training performing time-constrained reaching movements using the ARMin rehabilitation robot. We implemented a challenge level adaptation algorithm that controlled a virtual damping coefficient to reach a desired success rate. We tested the algorithm's effectiveness in regulating the success rate during game play in a simulation with computer-controlled players, in a feasibility study with six unimpaired players, and in a single session with one stroke patient. The algorithm demonstrated its capacity to adjust the damping coefficient to reach three levels of success rate (low [50%], moderate [70%], and high [90%]) during singleplayer and multiplayer training. For the patient - tested in single-player mode at the moderate success rate only - the algorithm showed also promising behavior. Results of the feasibility study showed that to increase the player's willingness to play at a more challenging task condition, the effect of the challenge level adaptation - regardless of being played in single player or multiplayer mode - might be more important than the provision of multiplayer setting alone. Furthermore, the multiplayer setting tends to be a motivating and encouraging therapy component. Based on these results we will optimize and expand the multiplayer training platform and further investigate multiplayer settings in stroke therapy.


Assuntos
Reabilitação Neurológica/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Jogos de Vídeo , Adulto , Algoritmos , Inteligência Artificial , Feminino , Humanos , Masculino , Robótica
7.
Front Aging Neurosci ; 8: 161, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458371

RESUMO

Age-related decline in gray and white brain matter goes together with cognitive depletion. To influence cognitive functioning in elderly, several types of physical exercise and nutritional intervention have been performed. This paper systematically reviews the potential additive and complementary effects of nutrition/nutritional supplements and physical exercise on cognition. The search strategy was developed for EMBASE, Medline, PubMed, Cochrane, CINAHL, and PsycInfo databases and focused on the research question: "Is the combination of physical exercise with nutrition/nutritional supplementation more effective than nutrition/nutritional supplementation or physical exercise alone in effecting on brain structure, metabolism, and/or function?" Both mammalian and human studies were included. In humans, randomized controlled trials that evaluated the effects of nutrition/nutritional supplements and physical exercise on cognitive functioning and associated parameters in healthy elderly (>65 years) were included. The systematic search included English and German language literature without any limitation of publication date. The search strategy yielded a total of 3129 references of which 67 studies met the inclusion criteria; 43 human and 24 mammalian, mainly rodent, studies. Three out of 43 human studies investigated a nutrition/physical exercise combination and reported no additive effects. In rodent studies, additive effects were found for docosahexaenoic acid supplementation when combined with physical exercise. Although feasible combinations of physical exercise/nutritional supplements are available for influencing the brain, only a few studies evaluated which possible combinations of nutrition/nutritional supplementation and physical exercise might have an effect on brain structure, metabolism and/or function. The reason for no clear effects of combinatory approaches in humans might be explained by the misfit between the combinations of nutritional methods with the physical interventions in the sense that they were not selected on sharing of similar neuronal mechanisms. Based on the results from this systematic review, future human studies should focus on the combined effect of docosahexaenoic acid supplementation and physical exercise that contains elements of (motor) learning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA