Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Signal ; 15(763): eabn2743, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473049

RESUMO

Increased proliferation and survival of cells in small pulmonary arteries (PAs) drive pulmonary arterial hypertension (PAH). Because cell growth mediated by the mTOR-containing mTORC1 complex is inhibited by tuberous sclerosis complex 2 (TSC2), we investigated the role of this GTPase-activating protein in PAH pathology. TSC2 abundance was decreased in remodeled small PAs and PA vascular smooth muscle cells (PAVSMCs) from patients with PAH or from rodent pulmonary hypertension (PH) models, as well as PAVSMCs maintained on substrates that reproduced pathology-induced stiffness. Accordingly, mice with smooth muscle-specific reduction in TSC2 developed PH. At the molecular level, decreased TSC2 abundance led to stiffness-induced PAVSMC proliferation, increased abundance of the mechanosensitive transcriptional coactivators YAP/TAZ, and enhanced mTOR kinase activity. Moreover, extracellular matrix (ECM) produced by TSC2-deficient PAVSMCs stimulated the proliferation of nondiseased PA adventitial fibroblasts and PAVSMCs through fibronectin and its receptor, the α5ß1 integrin. Reconstituting TSC2 in PAVSMCs from patients with PAH through overexpression or treatment with the SIRT1 activator SRT2104 decreased YAP/TAZ abundance, mTOR activity, and ECM production, as well as inhibited proliferation and induced apoptosis. In two rodent models of PH, SRT2104 treatment restored TSC2 abundance, attenuated pulmonary vascular remodeling, and ameliorated PH. Thus, TSC2 in PAVSMCs integrates ECM composition and stiffness with pro-proliferative and survival signaling, and restoring TSC2 abundance could be an attractive therapeutic option to treat PH.


Assuntos
Hipertensão Pulmonar , Esclerose Tuberosa , Animais , Camundongos , Proliferação de Células , Matriz Extracelular , Hipertensão Pulmonar/genética , Humanos
2.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628236

RESUMO

Prostacyclin analogs are among the most effective and widely used therapies for pulmonary arterial hypertension (PAH). However, it is unknown whether they also confer protection through right ventricle (RV) myocardio-specific mechanisms. Moreover, the use of prostacyclin analogs in severe models of PAH has not been adequately tested. To further identify underlying responses to prostacyclin, a prostacyclin analogue, treprostinil, was used in a preclinical rat Sugen-chronic hypoxia (SuCH) model of severe PAH that closely resembles the human disease. Male Sprague-Dawley rats were implanted with osmotic pumps containing vehicle or treprostinil, injected concurrently with a bolus of Sugen (SU5416) and exposed to 3-week hypoxia followed by 3-week normoxia. RV function was assessed using pressure-volume loops and hypertrophy by weight assessed. To identify altered mechanisms within the RV, tissue samples were used to perform a custom RNA array analysis, histological staining, and protein and transcript level confirmatory analyses. Treprostinil significantly reduced SuCH-associated RV hypertrophy and decreased the rise in RV systolic pressure, mean pulmonary arterial (mPAP), and right atrial (RAP) pressure. Prostacyclin treatment was associated with improvements in RV stroke work, maximum rate of ventricular pressure change (max dP/dt) and the contractile index, and almost a complete reversal of SuCH-associated increase in RV end-systolic elastance, suggesting the involvement of load-independent improvements in intrinsic RV systolic contractility by prostacyclin treatment. An analysis of the RV tissues showed no changes in cardiac mitochondrial respiration and ATP generation. However, custom RNA array analysis revealed amelioration of SuCH-associated increases in newly identified TBX20 as well as the fibrotic markers collagen1α1 and collagen 3α1 upon treprostinil treatment. Taken together, our data support decreased afterload and load-independent improvements in RV function following prostacyclin administration in severe PAH, and these changes appear to associate with improvements in RV fibrotic responses.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Hipertensão Pulmonar Primária Familiar/complicações , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/complicações , Hipertrofia Ventricular Direita/etiologia , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Masculino , Prostaglandinas I , RNA , Ratos , Ratos Sprague-Dawley
3.
Circ Res ; 130(5): 760-778, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35124974

RESUMO

RATIONALE: The MSTs (mammalian Ste20-like kinases) 1/2 are members of the HIPPO pathway that act as growth suppressors in adult proliferative diseases. Pulmonary arterial hypertension (PAH) manifests by increased proliferation and survival of pulmonary vascular cells in small PAs, pulmonary vascular remodeling, and the rise of pulmonary arterial pressure. The role of MST1/2 in PAH is currently unknown. OBJECTIVE: To investigate the roles and mechanisms of the action of MST1 and MST2 in PAH. METHODS AND RESULTS: Using early-passage pulmonary vascular cells from PAH and nondiseased lungs and mice with smooth muscle-specific tamoxifen-inducible Mst1/2 knockdown, we found that, in contrast to canonical antiproliferative/proapoptotic roles, MST1/2 act as proproliferative/prosurvival molecules in human PAH pulmonary arterial vascular smooth muscle cells and pulmonary arterial adventitial fibroblasts and support established pulmonary vascular remodeling and pulmonary hypertension in mice with SU5416/hypoxia-induced pulmonary hypertension. By using unbiased proteomic analysis, gain- and loss-of function approaches, and pharmacological inhibition of MST1/2 kinase activity by XMU-MP-1, we next evaluated mechanisms of regulation and function of MST1/2 in PAH pulmonary vascular cells. We found that, in PAH pulmonary arterial adventitial fibroblasts, the proproliferative function of MST1/2 is caused by IL-6-dependent MST1/2 overexpression, which induces PSMC6-dependent downregulation of forkhead homeobox type O 3 and hyperproliferation. In PAH pulmonary arterial vascular smooth muscle cells, MST1/2 acted via forming a disease-specific interaction with BUB3 and supported ECM (extracellular matrix)- and USP10-dependent BUB3 accumulation, upregulation of Akt-mTORC1, cell proliferation, and survival. Supporting our in vitro observations, smooth muscle-specific Mst1/2 knockdown halted upregulation of Akt-mTORC1 in small muscular PAs of mice with SU5416/hypoxia-induced pulmonary hypertension. CONCLUSIONS: Together, this study describes a novel proproliferative/prosurvival role of MST1/2 in PAH pulmonary vasculature, provides a novel mechanistic link from MST1/2 via BUB3 and forkhead homeobox type O to the abnormal proliferation and survival of pulmonary arterial vascular smooth muscle cells and pulmonary arterial adventitial fibroblasts, remodeling and pulmonary hypertension, and suggests new target pathways for therapeutic intervention.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Hipertensão Pulmonar , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Hipertensão Arterial Pulmonar , Animais , Proliferação de Células , Células Cultivadas , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Mamíferos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/metabolismo , Remodelação Vascular/fisiologia
4.
J Mol Cell Cardiol ; 162: 72-80, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34536439

RESUMO

Chronic hypoxia is a major driver of cardiovascular complications, including heart failure. The nitric oxide (NO) - soluble guanylyl cyclase (sGC) - cyclic guanosine monophosphate (cGMP) pathway is integral to vascular tone maintenance. Specifically, NO binds its receptor sGC within vascular smooth muscle cells (SMC) in its reduced heme (Fe2+) form to increase intracellular cGMP production, activate protein kinase G (PKG) signaling, and induce vessel relaxation. Under chronic hypoxia, oxidative stress drives oxidation of sGC heme (Fe2+→Fe3+), rendering it NO-insensitive. We previously showed that cytochrome b5 reductase 3 (CYB5R3) in SMC is a sGC reductase important for maintaining NO-dependent vasodilation and conferring resilience to systemic hypertension and sickle cell disease-associated pulmonary hypertension. To test whether CYB5R3 may be protective in the context of chronic hypoxia, we subjected SMC-specific CYB5R3 knockout mice (SMC CYB5R3 KO) to 3 weeks hypoxia and assessed vascular and cardiac function using echocardiography, pressure volume loops and wire myography. Hypoxic stress caused 1) biventricular hypertrophy in both WT and SMC CYB5R3 KO, but to a larger degree in KO mice, 2) blunted vasodilation to NO-dependent activation of sGC in coronary and pulmonary arteries of KO mice, and 3) decreased, albeit still normal, cardiac function in KO mice. Overall, these data indicate that SMC CYB5R3 deficiency potentiates bilateral ventricular hypertrophy and blunts NO-dependent vasodilation under chronic hypoxia conditions. This implicates that SMC CYB5R3 KO mice post 3-week hypoxia have early stages of cardiac remodeling and functional changes that could foretell significantly impaired cardiac function with longer exposure to hypoxia.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico , GMP Cíclico , Animais , GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Hipóxia , Camundongos , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo
5.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200497

RESUMO

Left ventricular (LV) heart failure (HF) is a significant and increasing cause of death worldwide. HF is characterized by myocardial remodeling and excessive fibrosis. Transcriptional co-activator Yes-associated protein (Yap), the downstream effector of HIPPO signaling pathway, is an essential factor in cardiomyocyte survival; however, its status in human LV HF is not entirely elucidated. Here, we report that Yap is elevated in LV tissue of patients with HF, and is associated with down-regulation of its upstream inhibitor HIPPO component large tumor suppressor 1 (LATS1) activation as well as upregulation of the fibrosis marker connective tissue growth factor (CTGF). Applying the established profibrotic combined stress of TGFß and hypoxia to human ventricular cardiac fibroblasts in vitro increased Yap protein levels, down-regulated LATS1 activation, increased cell proliferation and collagen I production, and decreased ribosomal protein S6 and S6 kinase phosphorylation, a hallmark of mTOR activation, without any significant effect on mTOR and raptor protein expression or phosphorylation of mTOR or 4E-binding protein 1 (4EBP1), a downstream effector of mTOR pathway. As previously reported in various cell types, TGFß/hypoxia also enhanced cardiac fibroblast Akt and ERK1/2 phosphorylation, which was similar to our observation in LV tissues from HF patients. Further, depletion of Yap reduced TGFß/hypoxia-induced cardiac fibroblast proliferation and Akt phosphorylation at Ser 473 and Thr308, without any significant effect on TGFß/hypoxia-induced ERK1/2 activation or reduction in S6 and S6 kinase activities. Taken together, these data demonstrate that Yap is a mediator that promotes human cardiac fibroblast proliferation and suggest its possible contribution to remodeling of the LV, opening the door to further studies to decipher the cell-specific roles of Yap signaling in human HF.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Insuficiência Cardíaca/patologia , Miofibroblastos/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Estudos de Casos e Controles , Células Cultivadas , Feminino , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Miofibroblastos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Ativação Transcricional , Proteínas de Sinalização YAP
6.
Circulation ; 144(8): 615-637, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34157861

RESUMO

BACKGROUND: Many patients with heart failure with preserved ejection fraction have metabolic syndrome and develop exercise-induced pulmonary hypertension (EIPH). Increases in pulmonary vascular resistance in patients with heart failure with preserved ejection fraction portend a poor prognosis; this phenotype is referred to as combined precapillary and postcapillary pulmonary hypertension (CpcPH). Therapeutic trials for EIPH and CpcPH have been disappointing, suggesting the need for strategies that target upstream mechanisms of disease. This work reports novel rat EIPH models and mechanisms of pulmonary vascular dysfunction centered around the transcriptional repression of the soluble guanylate cyclase (sGC) enzyme in pulmonary artery (PA) smooth muscle cells. METHODS: We used obese ZSF-1 leptin-receptor knockout rats (heart failure with preserved ejection fraction model), obese ZSF-1 rats treated with SU5416 to stimulate resting pulmonary hypertension (obese+sugen, CpcPH model), and lean ZSF-1 rats (controls). Right and left ventricular hemodynamics were evaluated using implanted catheters during treadmill exercise. PA function was evaluated with magnetic resonance imaging and myography. Overexpression of nuclear factor Y α subunit (NFYA), a transcriptional enhancer of sGC ß1 subunit (sGCß1), was performed by PA delivery of adeno-associated virus 6. Treatment groups received the SGLT2 inhibitor empagliflozin in drinking water. PA smooth muscle cells from rats and humans were cultured with palmitic acid, glucose, and insulin to induce metabolic stress. RESULTS: Obese rats showed normal resting right ventricular systolic pressures, which significantly increased during exercise, modeling EIPH. Obese+sugen rats showed anatomic PA remodeling and developed elevated right ventricular systolic pressure at rest, which was exacerbated with exercise, modeling CpcPH. Myography and magnetic resonance imaging during dobutamine challenge revealed PA functional impairment of both obese groups. PAs of obese rats produced reactive oxygen species and decreased sGCß1 expression. Mechanistically, cultured PA smooth muscle cells from obese rats and humans with diabetes or treated with palmitic acid, glucose, and insulin showed increased mitochondrial reactive oxygen species, which enhanced miR-193b-dependent RNA degradation of nuclear factor Y α subunit (NFYA), resulting in decreased sGCß1-cGMP signaling. Forced NYFA expression by adeno-associated virus 6 delivery increased sGCß1 levels and improved exercise pulmonary hypertension in obese+sugen rats. Treatment of obese+sugen rats with empagliflozin improved metabolic syndrome, reduced mitochondrial reactive oxygen species and miR-193b levels, restored NFYA/sGC activity, and prevented EIPH. CONCLUSIONS: In heart failure with preserved ejection fraction and CpcPH models, metabolic syndrome contributes to pulmonary vascular dysfunction and EIPH through enhanced reactive oxygen species and miR-193b expression, which downregulates NFYA-dependent sGCß1 expression. Adeno-associated virus-mediated NFYA overexpression and SGLT2 inhibition restore NFYA-sGCß1-cGMP signaling and ameliorate EIPH.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Insuficiência Cardíaca/etiologia , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/etiologia , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , MicroRNAs/genética , Espécies Reativas de Oxigênio/metabolismo , Guanilil Ciclase Solúvel/genética , Animais , Animais Geneticamente Modificados , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Exercício Físico , Regulação da Expressão Gênica , Insuficiência Cardíaca/diagnóstico , Humanos , Síndrome Metabólica/complicações , Mitocôndrias Cardíacas , Miócitos de Músculo Liso/metabolismo , Fenótipo , Ratos , Transdução de Sinais , Estresse Fisiológico , Volume Sistólico , Disfunção Ventricular Direita
7.
Arterioscler Thromb Vasc Biol ; 41(2): 769-782, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267657

RESUMO

OBJECTIVE: Chronic hemolysis is a hallmark of sickle cell disease (SCD) and a driver of vasculopathy; however, the mechanisms contributing to hemolysis remain incompletely understood. Although XO (xanthine oxidase) activity has been shown to be elevated in SCD, its role remains unknown. XO binds endothelium and generates oxidants as a byproduct of hypoxanthine and xanthine catabolism. We hypothesized that XO inhibition decreases oxidant production leading to less hemolysis. Approach and Results: Wild-type mice were bone marrow transplanted with control (AA) or sickle (SS) Townes bone marrow. After 12 weeks, mice were treated with 10 mg/kg per day of febuxostat (Uloric), Food and Drug Administration-approved XO inhibitor, for 10 weeks. Hematologic analysis demonstrated increased hematocrit, cellular hemoglobin, and red blood cells, with no change in reticulocyte percentage. Significant decreases in cell-free hemoglobin and increases in haptoglobin suggest XO inhibition decreased hemolysis. Myographic studies demonstrated improved pulmonary vascular dilation and blunted constriction, indicating improved pulmonary vasoreactivity, whereas pulmonary pressure and cardiac function were unaffected. The role of hepatic XO in SCD was evaluated by bone marrow transplanting hepatocyte-specific XO knockout mice with SS Townes bone marrow. However, hepatocyte-specific XO knockout, which results in >50% diminution in circulating XO, did not affect hemolysis levels or vascular function, suggesting hepatocyte-derived elevation of circulating XO is not the driver of hemolysis in SCD. CONCLUSIONS: Ten weeks of febuxostat treatment significantly decreased hemolysis and improved pulmonary vasoreactivity in a mouse model of SCD. Although hepatic XO accounts for >50% of circulating XO, it is not the source of XO driving hemolysis in SCD.


Assuntos
Anemia Falciforme/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Eritrócitos/efeitos dos fármacos , Febuxostat/farmacologia , Hemodinâmica/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Xantina Oxidase/antagonistas & inibidores , Anemia Falciforme/sangue , Anemia Falciforme/enzimologia , Anemia Falciforme/fisiopatologia , Animais , Modelos Animais de Doenças , Eritrócitos/enzimologia , Fígado/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Artéria Pulmonar/enzimologia , Artéria Pulmonar/fisiopatologia , Função Ventricular/efeitos dos fármacos , Xantina Oxidase/genética , Xantina Oxidase/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 40(6): 1543-1558, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268788

RESUMO

OBJECTIVE: Pulmonary hypertension (PH) due to left heart disease (group 2), especially in the setting of heart failure with preserved ejection fraction (HFpEF), is the most common cause of PH worldwide; however, at present, there is no proven effective therapy available for its treatment. PH-HFpEF is associated with insulin resistance and features of metabolic syndrome. The stable prostacyclin analog, treprostinil, is an effective and widely used Food and Drug Administration-approved drug for the treatment of pulmonary arterial hypertension. While the effect of treprostinil on metabolic syndrome is unknown, a recent study suggests that the prostacyclin analog beraprost can improve glucose intolerance and insulin sensitivity. We sought to evaluate the effectiveness of treprostinil in the treatment of metabolic syndrome-associated PH-HFpEF. Approach and Results: Treprostinil treatment was given to mice with mild metabolic syndrome-associated PH-HFpEF induced by high-fat diet and to SU5416/obese ZSF1 rats, a model created by the treatment of rats with a more profound metabolic syndrome due to double leptin receptor defect (obese ZSF1) with a vascular endothelial growth factor receptor blocker SU5416. In high-fat diet-exposed mice, chronic treatment with treprostinil reduced hyperglycemia and pulmonary hypertension. In SU5416/Obese ZSF1 rats, treprostinil improved hyperglycemia with similar efficacy to that of metformin (a first-line drug for type 2 diabetes mellitus); the glucose-lowering effect of treprostinil was further potentiated by the combined treatment with metformin. Early treatment with treprostinil in SU5416/Obese ZSF1 rats lowered pulmonary pressures, and a late treatment with treprostinil together with metformin improved pulmonary artery acceleration time to ejection time ratio and tricuspid annular plane systolic excursion with AMPK (AMP-activated protein kinase) activation in skeletal muscle and the right ventricle. CONCLUSIONS: Our data suggest a potential use of treprostinil as an early treatment for mild metabolic syndrome-associated PH-HFpEF and that combined treatment with treprostinil and metformin may improve hyperglycemia and cardiac function in a more severe disease.


Assuntos
Epoprostenol/análogos & derivados , Insuficiência Cardíaca/complicações , Hiperglicemia/tratamento farmacológico , Hipertensão Pulmonar/tratamento farmacológico , Metformina/uso terapêutico , Volume Sistólico/fisiologia , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/fisiologia , Animais , Anti-Hipertensivos , Dieta Hiperlipídica , Epoprostenol/uso terapêutico , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Hipoglicemiantes , Resistência à Insulina , Masculino , Síndrome Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/fisiopatologia , Ratos , Receptores para Leptina/genética
9.
Blood Adv ; 3(23): 4104-4116, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31821458

RESUMO

Pulmonary and systemic vasculopathies are significant risk factors for early morbidity and death in patients with sickle cell disease (SCD). An underlying mechanism of SCD vasculopathy is vascular smooth muscle (VSM) nitric oxide (NO) resistance, which is mediated by NO scavenging reactions with plasma hemoglobin (Hb) and reactive oxygen species that can oxidize soluble guanylyl cyclase (sGC), the NO receptor. Prior studies show that cytochrome b5 reductase 3 (CYB5R3), known as methemoglobin reductase in erythrocytes, functions in VSM as an sGC heme iron reductase critical for reducing and sensitizing sGC to NO and generating cyclic guanosine monophosphate for vasodilation. Therefore, we hypothesized that VSM CYB5R3 deficiency accelerates development of pulmonary hypertension (PH) in SCD. Bone marrow transplant was used to create SCD chimeric mice with background smooth muscle cell (SMC)-specific tamoxifen-inducible Cyb5r3 knockout (SMC R3 KO) and wild-type (WT) control. Three weeks after completing tamoxifen treatment, we observed 60% knockdown of pulmonary arterial SMC CYB5R3, 5 to 6 mm Hg elevated right-ventricular (RV) maximum systolic pressure (RVmaxSP) and biventricular hypertrophy in SS chimeras with SMC R3 KO (SS/R3KD) relative to WT (SS/R3WT). RV contractility, heart rate, hematological parameters, and cell-free Hb were similar between groups. When identically generated SS/R3 chimeras were studied 12 weeks after completing tamoxifen treatment, RVmaxSP in SS/R3KD had not increased further, but RV hypertrophy relative to SS/R3WT persisted. These are the first studies to establish involvement of SMC CYB5R3 in SCD-associated development of PH, which can exist in mice by 5 weeks of SMC CYB5R3 protein deficiency.


Assuntos
Anemia Falciforme/complicações , Citocromos b5/deficiência , Hipertensão Pulmonar/fisiopatologia , Animais , Humanos , Camundongos
11.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1150-L1164, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30892078

RESUMO

Pulmonary hypertension (PH) is a leading cause of death in sickle cell disease (SCD) patients. Hemolysis and oxidative stress contribute to SCD-associated PH. We have reported that the protein thrombospondin-1 (TSP1) is elevated in the plasma of patients with SCD and, by interacting with its receptor CD47, limits vasodilation of distal pulmonary arteries ex vivo. We hypothesized that the TSP1-CD47 interaction may promote PH in SCD. We found that TSP1 and CD47 are upregulated in the lungs of Berkeley (BERK) sickling (Sickle) mice and patients with SCD-associated PH. We then generated chimeric animals by transplanting BERK bone marrow into C57BL/6J (n = 24) and CD47 knockout (CD47KO, n = 27) mice. Right ventricular (RV) pressure was lower in fully engrafted Sickle-to-CD47KO than Sickle-to-C57BL/6J chimeras, as shown by the reduced maximum RV pressure (P = 0.013) and mean pulmonary artery pressure (P = 0.020). The afterload of the sickle-to-CD47KO chimeras was also lower, as shown by the diminished pulmonary vascular resistance (P = 0.024) and RV effective arterial elastance (P = 0.052). On myography, aortic segments from Sickle-to-CD47KO chimeras showed improved relaxation to acetylcholine. We hypothesized that, in SCD, TSP1-CD47 signaling promotes PH, in part, by increasing reactive oxygen species (ROS) generation. In human pulmonary artery endothelial cells, treatment with TSP1 stimulated ROS generation, which was abrogated by CD47 blockade. Explanted lungs of CD47KO chimeras had less vascular congestion and a smaller oxidative footprint. Our results show that genetic absence of CD47 ameliorates SCD-associated PH, which may be due to decreased ROS levels. Modulation of TSP1-CD47 may provide a new molecular approach to the treatment of SCD-associated PH.


Assuntos
Anemia Falciforme/patologia , Antígeno CD47/metabolismo , Hipertensão Pulmonar/patologia , Artéria Pulmonar/patologia , Trombospondina 1/metabolismo , Anemia Falciforme/genética , Animais , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/genética , Células Cultivadas , Células Endoteliais/patologia , Humanos , Hipertensão Pulmonar/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Artéria Pulmonar/citologia , Espécies Reativas de Oxigênio/metabolismo , Função Ventricular Direita/fisiologia
12.
PLoS One ; 13(12): e0208540, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532231

RESUMO

The relationship between cardiovascular disease and abnormalities in sleep architecture is complex and bi-directional. Sleep disordered breathing (SDB) often confounds human studies examining sleep in the setting of heart failure, and the independent impact of isolated right or left heart failure on sleep is difficult to assess. We utilized an animal model of right heart failure using pulmonary artery banding (PAB) in mice to examine the causal effect of right heart failure on sleep architecture. Four weeks after PAB or sham (control) surgery, sleep was measured by polysomnography for 48 hours and right ventricular (RV) hypertrophy confirmed prior to sacrifice. PAB resulted in right ventricular hypertrophy based on a 30% increase in the Fulton Index (p < 0.01). After PAB, mice spent significantly more time in NREM sleep compared to the control group over a 24 hour period (53.5 ± 1.5% vs. 46.6 ± 1.4%; p < 0.01) and exhibited an inability to both cycle into REM sleep and decrease delta density across the light/sleep period. Our results support a phenotype of impaired sleep cycling and increased 'sleepiness' in a mouse model of RV dysfunction.


Assuntos
Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/fisiopatologia , Sonolência , Disfunção Ventricular Direita/complicações , Animais , Pressão Sanguínea , Escuridão , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sono REM , Fatores de Tempo
13.
Am J Respir Cell Mol Biol ; 58(5): 636-647, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29268036

RESUMO

Sickle cell disease (SCD) is associated with intravascular hemolysis and oxidative inhibition of nitric oxide (NO) signaling. BAY 54-6544 is a small-molecule activator of oxidized soluble guanylate cyclase (sGC), which, unlike endogenous NO and the sGC stimulator, BAY 41-8543, preferentially binds and activates heme-free, NO-insensitive sGC to restore enzymatic cGMP production. We tested orally delivered sGC activator, BAY 54-6544 (17 mg/kg/d), sGC stimulator, BAY 41-8543, sildenafil, and placebo for 4-12 weeks in the Berkeley transgenic mouse model of SCD (BERK-SCD) and their hemizygous (Hemi) littermate controls (BERK-Hemi). Right ventricular (RV) maximum systolic pressure (RVmaxSP) was measured using micro right-heart catheterization. RV hypertrophy (RVH) was determined using Fulton's index and RV corrected weight (ratio of RV to tibia). Pulmonary artery vasoreactivity was tested for endothelium-dependent and -independent vessel relaxation. Right-heart catheterization revealed higher RVmaxSP and RVH in BERK-SCD versus BERK-Hemi, which worsened with age. Treatment with the sGC activator more effectively lowered RVmaxSP and RVH, with 90-day treatment delivering superior results, when compared with other treatments and placebo groups. In myography experiments, acetylcholine-induced (endothelium-dependent) and sodium-nitroprusside-induced (endothelium-independent NO donor) relaxation of the pulmonary artery harvested from placebo-treated BERK-SCD was impaired relative to BERK-Hemi but improved after therapy with sGC activator. By contrast, no significant effect for sGC stimulator or sildenafil was observed in BERK-SCD. These findings suggest that sGC is oxidized in the pulmonary arteries of transgenic SCD mice, leading to blunted responses to NO, and that the sGC activator, BAY 54-6544, may represent a novel therapy for SCD-associated pulmonary arterial hypertension and cardiac remodeling.


Assuntos
Anemia Falciforme/complicações , Ativadores de Enzimas/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Esquerda/prevenção & controle , Artéria Pulmonar/efeitos dos fármacos , Guanilil Ciclase Solúvel/metabolismo , Disfunção Ventricular Direita/tratamento farmacológico , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Anemia Falciforme/genética , Animais , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Ativação Enzimática , Ativadores de Enzimas/farmacocinética , Ventrículos do Coração/enzimologia , Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/fisiopatologia , Camundongos Transgênicos , Morfolinas/farmacologia , Óxido Nítrico/metabolismo , Artéria Pulmonar/enzimologia , Artéria Pulmonar/fisiopatologia , Pirimidinas/farmacologia , Citrato de Sildenafila/farmacologia , Vasodilatação/efeitos dos fármacos , Disfunção Ventricular Direita/enzimologia , Disfunção Ventricular Direita/genética , Disfunção Ventricular Direita/fisiopatologia , Pressão Ventricular/efeitos dos fármacos
14.
Am J Respir Cell Mol Biol ; 57(5): 615-625, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28679058

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling, increased pulmonary artery (PA) pressure, right-heart afterload and death. Mechanistic target of rapamycin (mTOR) promotes smooth muscle cell proliferation, survival, and pulmonary vascular remodeling via two functionally distinct mTOR complexes (mTORCs)-1 (supports cell growth) and -2 (promotes cell survival), and dual mTORC1/mTORC2 inhibition selectively induces pulmonary arterial hypertension PA vascular smooth muscle cell apoptosis and reverses pulmonary vascular remodeling. The consequences of mTOR inhibition on right ventricle (RV) morphology and function are not known. Using SU5416/hypoxia rat model of pulmonary hypertension (PH), we report that, in contrast to activation of both mTORC1 and mTORC2 pathways in small remodeled PAs, RV tissues had predominant up-regulation of mTORC1 signaling accompanied by cardiomyocyte and RV hypertrophy, increased RV wall thickness, RV/left ventricle end-diastolic area ratio, RV contractility and afterload (arterial elastance), and shorter RV acceleration time compared with controls. Treatment with mTOR kinase inhibitor, PP242, at Weeks 6-8 after PH induction suppressed both mTORC1 and mTORC2 in small PAs, but only mTORC1 signaling in RV, preserving basal mTORC2-Akt levels. Vehicle-treated rats showed further PH and RV worsening and profound RV fibrosis. PP242 reversed pulmonary vascular remodeling and prevented neointimal occlusion of small PAs, significantly reduced PA pressure and pulmonary vascular resistance, reversed cardiomyocyte hypertrophy and RV remodeling, improved max RV contractility, arterial elastance, and RV acceleration time, and prevented development of RV fibrosis. Collectively, these data show a predominant role of mTORC1 versus mTORC2 in RV pathology, and suggest potential attractiveness of mTOR inhibition to simultaneously target pulmonary vascular remodeling and RV dysfunction in established PH.


Assuntos
Hipertrofia Ventricular Direita/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Indóis/farmacologia , Masculino , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Pirróis/farmacologia , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/antagonistas & inibidores
15.
Am J Respir Cell Mol Biol ; 56(4): 497-505, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28118022

RESUMO

Pulmonary hypertension (PH) associated with heart failure with preserved ejection fraction (PH-HFpEF; World Health Organization Group II) secondary to left ventricular (LV) diastolic dysfunction is the most frequent cause of PH. It is an increasingly recognized clinical complication of the metabolic syndrome. To date, no effective treatment has been identified, and no genetically modifiable mouse model is available for advancing our understanding for PH-HFpEF. To develop a mouse model of PH-HFpEF, we exposed 36 mouse strains to 20 weeks of high-fat diet (HFD), followed by systematic evaluation of right ventricular (RV) and LV pressure-volume analysis. The HFD induces obesity, glucose intolerance, insulin resistance, hyperlipidemia, as well as PH, in susceptible strains. We observed that certain mouse strains, such as AKR/J, NON/shiLtJ, and WSB/EiJ, developed hemodynamic signs of PH-HFpEF. Of the strains that develop PH-HFpEF, we selected AKR/J for further model validation, as it is known to be prone to HFD-induced metabolic syndrome and had low variability in hemodynamics. HFD-treated AKR/J mice demonstrate reproducibly higher RV systolic pressure compared with mice fed with regular diet, along with increased LV end-diastolic pressure, both RV and LV hypertrophy, glucose intolerance, and elevated HbA1c levels. Time course assessments showed that HFD significantly increased body weight, RV systolic pressure, LV end-diastolic pressure, biventricular hypertrophy, and HbA1c throughout the treatment period. Moreover, we also identified and validated 129S1/SvlmJ as a resistant mouse strain to HFD-induced PH-HFpEF. These studies validate an HFD/AKR/J mouse model of PH-HFpEF, which may offer a new avenue for testing potential mechanisms and treatments for this disease.


Assuntos
Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/fisiopatologia , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/fisiopatologia , Síndrome Metabólica/complicações , Síndrome Metabólica/fisiopatologia , Volume Sistólico , Animais , Pressão Sanguínea , Diástole , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Insuficiência Cardíaca/patologia , Hipertensão Pulmonar/patologia , Síndrome Metabólica/patologia , Camundongos , Camundongos Endogâmicos AKR , Reprodutibilidade dos Testes , Sístole
16.
Am J Respir Cell Mol Biol ; 56(4): 488-496, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28085498

RESUMO

Pulmonary hypertension (PH) is associated with features of obesity and metabolic syndrome that translate to the induction of PH by chronic high-fat diet (HFD) in some inbred mouse strains. We conducted a genome-wide association study (GWAS) to identify candidate genes associated with susceptibility to HFD-induced PH. Mice from 36 inbred and wild-derived strains were fed with regular diet or HFD for 20 weeks beginning at 6-12 weeks of age, after which right ventricular (RV) and left ventricular (LV) end-systolic pressure (ESP) and maximum pressure (MaxP) were measured by cardiac catheterization. We tested for association of RV MaxP and RV ESP and identified genomic regions enriched with nominal associations to both of these phenotypes. We excluded genomic regions if they were also associated with LV MaxP, LV ESP, or body weight. Genes within significant regions were scored based on the shortest-path betweenness centrality, a measure of network connectivity, of their human orthologs in a gene interaction network of human PH-related genes. WSB/EiJ, NON/ShiLtJ, and AKR/J mice had the largest increases in RV MaxP after high-fat feeding. Network-based scoring of GWAS candidates identified epidermal growth factor receptor (Egfr) as having the highest shortest-path betweenness centrality of GWAS candidates. Expression studies of lung homogenate showed that EGFR expression is increased in the AKR/J strain, which developed a significant increase in RV MaxP after high-fat feeding as compared with C57BL/6J, which did not. Our combined GWAS and network-based approach adds evidence for a role for Egfr in murine PH.


Assuntos
Receptores ErbB/metabolismo , Estudo de Associação Genômica Ampla , Hipertensão Pulmonar/genética , Animais , Dieta Hiperlipídica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Ventrículos do Coração/fisiopatologia , Hemodinâmica , Humanos , Hipertensão Pulmonar/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos C57BL
17.
Cardiovasc Res ; 113(1): 15-29, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27742621

RESUMO

AIMS: Thrombospondin-1 (TSP1) is a ligand for CD47 and TSP1-/- mice are protected from pulmonary hypertension (PH). We hypothesized the TSP1-CD47 axis is upregulated in human PH and promotes pulmonary arterial vasculopathy. METHODS AND RESULTS: We analyzed the molecular signature and functional response of lung tissue and distal pulmonary arteries (PAs) from individuals with (n = 23) and without (n = 16) PH. Compared with controls, lungs and distal PAs from PH patients showed induction of TSP1-CD47 and endothelin-1/endothelin A receptor (ET-1/ETA) protein and mRNA. In control PAs, treatment with exogenous TSP1 inhibited vasodilation and potentiated vasoconstriction to ET-1. Treatment of diseased PAs from PH patients with a CD47 blocking antibody improved sensitivity to vasodilators. Hypoxic wild type (WT) mice developed PH and displayed upregulation of pulmonary TSP1, CD47, and ET-1/ETA concurrent with down regulation of the transcription factor cell homolog of the v-myc oncogene (cMyc). In contrast, PH was attenuated in hypoxic CD47-/- mice while pulmonary TSP1 and ET-1/ETA were unchanged and cMyc was overexpressed. In CD47-/- pulmonary endothelial cells cMyc was increased and ET-1 decreased. In CD47+/+ cells, forced induction of cMyc suppressed ET-1 transcript, whereas suppression of cMyc increased ET-1 signaling. Furthermore, disrupting TSP1-CD47 signaling in pulmonary smooth muscle cells abrogated ET-1-stimulated hypertrophy. Finally, a CD47 antibody given 2 weeks after monocrotaline challenge in rats upregulated pulmonary cMyc and improved aberrations in PH-associated cardiopulmonary parameters. CONCLUSIONS: In pre-clinical models of PH CD47 targets cMyc to increase ET-1 signaling. In clinical PH TSP1-CD47 is upregulated, and in both, contributes to pulmonary arterial vasculopathy and dysfunction.


Assuntos
Pressão Arterial , Antígeno CD47/metabolismo , Hipertensão Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Transdução de Sinais , Trombospondina 1/metabolismo , Adulto , Idoso , Animais , Antígeno CD47/genética , Estudos de Casos e Controles , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Endotelina-1/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fenótipo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Artéria Pulmonar/fisiopatologia , Interferência de RNA , Ratos , Trombospondina 1/deficiência , Trombospondina 1/genética , Transfecção , Regulação para Cima , Vasoconstrição , Vasodilatação , Adulto Jovem
18.
Transfusion ; 56(10): 2571-2583, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27507802

RESUMO

BACKGROUND: Red blood cell (RBC) hemolysis represents an intrinsic mechanism for human vascular disease. Intravascular hemolysis releases hemoglobin and other metabolites that inhibit nitric oxide signaling and drive oxidative and inflammatory stress. Although these pathways are important in disease pathogenesis, genetic and population modifiers of hemolysis, including sex, have not been established. STUDY DESIGN AND METHODS: We studied sex differences in storage or stress-induced hemolysis in RBC units from the United States and Canada in 22 inbred mouse strains and in patients with sickle cell disease (SCD) using measures of hemolysis in 315 patients who had homozygous SS hemoglobin from the Walk-PHASST cohort. A mouse model also was used to evaluate posttransfusion recovery of stored RBCs, and gonadectomy was used to determine the mechanisms related to sex hormones. RESULTS: An analysis of predisposition to hemolysis based on sex revealed that male RBCs consistently exhibit increased susceptibility to hemolysis compared with females in response to routine cold storage, under osmotic or oxidative stress, after transfusion in mice, and in patients with SCD. The sex difference is intrinsic to the RBC and is not mediated by plasmatic factors or female sex hormones. Importantly, orchiectomy in mice improves RBC storage stability and posttransfusion recovery, whereas testosterone repletion therapy exacerbates hemolytic response to osmotic or oxidative stress. CONCLUSION: Our findings suggest that testosterone increases susceptibility to hemolysis across human diseases, suggesting that male sex may modulate clinical outcomes in blood storage and SCD and establishing a role for donor genetic variables in the viability of stored RBCs and in human hemolytic diseases.


Assuntos
Eritrócitos/metabolismo , Hemólise , Fatores Sexuais , Testosterona/farmacologia , Adulto , Fatores Etários , Animais , Preservação de Sangue , Canadá , Eritrócitos/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Pessoa de Meia-Idade , Pressão Osmótica , Estresse Oxidativo , Estados Unidos
19.
J Am Heart Assoc ; 3(3): e000670, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922625

RESUMO

BACKGROUND: Left ventricular heart failure (LVHF) remains progressive and fatal and is a formidable health problem because ever-larger numbers of people are diagnosed with this disease. Therapeutics, while relieving symptoms and extending life in some cases, cannot resolve this process and transplant remains the option of last resort for many. Our team has described a widely expressed cell surface receptor (CD47) that is activated by its high-affinity secreted ligand, thrombospondin 1 (TSP1), in acute injury and chronic disease; however, a role for activated CD47 in LVHF has not previously been proposed. METHODS AND RESULTS: In experimental LVHF TSP1-CD47 signaling is increased concurrent with up-regulation of cardiac histone deacetylase 3 (HDAC3). Mice mutated to lack CD47 displayed protection from transverse aortic constriction (TAC)-driven LVHF with enhanced cardiac function, decreased cellular hypertrophy and fibrosis, decreased maladaptive autophagy, and decreased expression of HDAC3. In cell culture, treatment of cardiac myocyte CD47 with a TSP1-derived peptide, which binds and activates CD47, increased HDAC3 expression and myocyte hypertrophy in a Ca(2+)/calmodulin protein kinase II (CaMKII)-dependent manner. Conversely, antibody blocking of CD47 activation, or pharmacologic inhibition of CaMKII, suppressed HDAC3 expression, decreased myocyte hypertrophy, and mitigated established LVHF. Downstream gene suppression of HDAC3 mimicked the protective effects of CD47 blockade and decreased hypertrophy in myocytes and mitigated LVHF in animals. CONCLUSIONS: These data identify a proximate role for the TSP1-CD47 axis in promoting LVHF by CaKMII-mediated up-regulation of HDAC3 and suggest novel therapeutic opportunities.


Assuntos
Antígeno CD47/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Insuficiência Cardíaca/fisiopatologia , Histona Desacetilases/biossíntese , Animais , Células Cultivadas , Indução Enzimática/fisiologia , Insuficiência Cardíaca/etiologia , Histona Desacetilases/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Miócitos Cardíacos/fisiologia , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
20.
Dev Dyn ; 240(1): 240-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21128305

RESUMO

Fibroblast growth factor receptors (Fgfrs) have critical roles in kidney development. FgfrIIIb is thought to act in epithelium, while FgfrIIIc functions in mesenchyme. We aimed to determine roles of Fgfr2IIIc in kidney development. Mice with deletion of Fgfr2IIIc (Fgfr2IIIc-/-) had normal kidneys. Combination of Fgfr2IIIc-/- with conditional deletion of Fgfr1 in metanephric mesenchyme (MM) (Fgfr1(Mes-/-)Fgfr2IIIc-/-) had small but identifiable MM at embryonic day (E) 10.5, expressing mesenchymal markers including Eya1, Six2, Pax2, and Gdnf (unlike Fgfr1/2(Mes-/-) mice that have no obvious MM). E11.5 Fgfr1(Mes-/-)Fgfr2IIIc-/- mice had rudimentary MM expressing only Eya1. Control, Fgfr2IIIc-/-, and Fgfr1(Mes-/-)Fgfr2IIIc-/- kidney mesenchymal tissues also express Fgfr2IIIb. In ureteric lineages, E10.5 Fgfr1(Mes-/-)Fgfr2IIIc-/- embryos had ureteric outgrowth (sometimes multiple buds); however, by E11.5 Gdnf absence lead to no ureteric elongation or branching (similar to Fgfr1/2(Mes-/-) mice). Beyond E12.5, Fgfr1(Mes-/-)Fgfr2IIIc-/- mice had no renal tissue. In conclusion, Fgfr2IIIc and Fgfr1 in kidney mesenchyme (together) are critical for normal early renal development.


Assuntos
Indução Embrionária/genética , Rim/embriologia , Mesoderma/embriologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Animais , Células Cultivadas , Simulação por Computador , Embrião de Mamíferos , Rim/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Néfrons/embriologia , Néfrons/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Ureter/embriologia , Ureter/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA