Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 614(7948): 436-439, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792736

RESUMO

The mergers of neutron stars expel a heavy-element enriched fireball that can be observed as a kilonova1-4. The kilonova's geometry is a key diagnostic of the merger and is dictated by the properties of ultra-dense matter and the energetics of the collapse to a black hole. Current hydrodynamical merger models typically show aspherical ejecta5-7. Previously, Sr+ was identified in the spectrum8 of the only well-studied kilonova9-11 AT2017gfo12, associated with the gravitational wave event GW170817. Here we combine the strong Sr+ P Cygni absorption-emission spectral feature and the blackbody nature of kilonova spectrum to determine that the kilonova is highly spherical at early epochs. Line shape analysis combined with the known inclination angle of the source13 also show the same sphericity independently. We conclude that energy injection by radioactive decay is insufficient to make the ejecta spherical. A magnetar wind or jet from the black-hole disk could inject enough energy to induce a more spherical distribution in the overall ejecta; however, an additional process seems necessary to make the element distribution uniform.

2.
Phys Rev Lett ; 125(14): 141103, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064526

RESUMO

Using hydrodynamical simulations for a large set of high-density matter equations of state (EOSs), we systematically determine the threshold mass M_{thres} for prompt black-hole formation in equal-mass and asymmetric neutron star (NS) mergers. We devise the so far most direct, general, and accurate method to determine the unknown maximum mass of nonrotating NSs from merger observations revealing M_{thres}. Considering hybrid EOSs with hadron-quark phase transition, we identify a new, observable signature of quark matter in NS mergers. Furthermore, our findings have direct applications in gravitational wave searches, kilonova interpretations, and multimessenger constraints on NS properties.

3.
Phys Rev Lett ; 125(26): 261101, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449761

RESUMO

Finite-size effects on the gravitational wave signal from a neutron star merger typically manifest at high frequencies where detector sensitivity decreases. Proposed sensitivity improvements can give us access both to stronger signals and to a myriad of weak signals from cosmological distances. The latter will outnumber the former and the relevant part of the signal will be redshifted towards the detector's most sensitive band. We study the redshift dependence of information about neutron star matter and find that single-scale properties, such as the star radius or the postmerger frequency, are better measured from the distant weak sources from z∼1.

4.
Nature ; 574(7779): 497-500, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645733

RESUMO

Half of all of the elements in the Universe that are heavier than iron were created by rapid neutron capture. The theory underlying this astrophysical r-process was worked out six decades ago, and requires an enormous neutron flux to make the bulk of the elements1. Where this happens is still debated2. A key piece of evidence would be the discovery of freshly synthesized r-process elements in an astrophysical site. Existing models3-5 and circumstantial evidence6 point to neutron-star mergers as a probable r-process site; the optical/infrared transient known as a 'kilonova' that emerges in the days after a merger is a likely place to detect the spectral signatures of newly created neutron-capture elements7-9. The kilonova AT2017gfo-which was found following the discovery of the neutron-star merger GW170817 by gravitational-wave detectors10-was the first kilonova for which detailed spectra were recorded. When these spectra were first reported11,12, it was argued that they were broadly consistent with an outflow of radioactive heavy elements; however, there was no robust identification of any one element. Here we report the identification of the neutron-capture element strontium in a reanalysis of these spectra. The detection of a neutron-capture element associated with the collision of two extreme-density stars establishes the origin of r-process elements in neutron-star mergers, and shows that neutron stars are made of neutron-rich matter13.

5.
Phys Rev Lett ; 122(6): 061102, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822078

RESUMO

We identify an observable imprint of a first-order hadron-quark phase transition at supranuclear densities on the gravitational-wave (GW) emission of neutron-star mergers. Specifically, we show that the dominant postmerger GW frequency f_{peak} may exhibit a significant deviation from an empirical relation between f_{peak} and the tidal deformability if a strong first-order phase transition leads to the formation of a gravitationally stable extended quark matter core in the postmerger remnant. A comparison of the GW signatures from a large, representative sample of microphysical, purely hadronic equations of state indicates that this imprint is only observed in those systems which undergo a strong first-order phase transition. Such a shift of the dominant postmerger GW frequency can be revealed by future GW observations, which would provide evidence for the existence of a strong first-order phase transition in the interior of neutron-stars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA