Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
2.
Antiviral Res ; 209: 105484, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503013

RESUMO

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health crisis. The reduced efficacy of therapeutic monoclonal antibodies against emerging SARS-CoV-2 variants of concern (VOCs), such as omicron BA.5 subvariants, has underlined the need to explore a novel spectrum of antivirals that are effective against existing and evolving SARS-CoV-2 VOCs. To address the need for novel therapeutic options, we applied cell-based high-content screening to a library of natural products (NPs) obtained from plants, fungi, bacteria, and marine sponges, which represent a considerable diversity of chemical scaffolds. The antiviral effect of 373 NPs was evaluated using the mNeonGreen (mNG) reporter SARS-CoV-2 virus in a lung epithelial cell line (Calu-3). The screening identified 26 NPs with half-maximal effective concentrations (EC50) below 50 µM against mNG-SARS-CoV-2; 16 of these had EC50 values below 10 µM and three NPs (holyrine A, alotaketal C, and bafilomycin D) had EC50 values in the nanomolar range. We demonstrated the pan-SARS-CoV-2 activity of these three lead antivirals against SARS-CoV-2 highly transmissible Omicron subvariants (BA.5, BA.2 and BA.1) and highly pathogenic Delta VOCs in human Calu-3 lung cells. Notably, holyrine A, alotaketal C, and bafilomycin D, are potent nanomolar inhibitors of SARS-CoV-2 Omicron subvariants BA.5 and BA.2. The pan-SARS-CoV-2 activity of alotaketal C [protein kinase C (PKC) activator] and bafilomycin D (V-ATPase inhibitor) suggest that these two NPs are acting as host-directed antivirals (HDAs). Future research should explore whether PKC regulation impacts human susceptibility to and the severity of SARS-CoV-2 infection, and it should confirm the important role of human V-ATPase in the VOC lifecycle. Interestingly, we observed a synergistic action of bafilomycin D and N-0385 (a highly potent inhibitor of human TMPRSS2 protease) against Omicron subvariant BA.2 in human Calu-3 lung cells, which suggests that these two highly potent HDAs are targeting two different mechanisms of SARS-CoV-2 entry. Overall, our study provides insight into the potential of NPs with highly diverse chemical structures as valuable inspirational starting points for developing pan-SARS-CoV-2 therapeutics and for unravelling potential host factors and pathways regulating SARS-CoV-2 VOC infection including emerging omicron BA.5 subvariants.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Adenosina Trifosfatases , Antivirais/farmacologia , Antivirais/uso terapêutico , Produtos Biológicos/farmacologia , Glicoproteína da Espícula de Coronavírus
3.
J Mol Diagn ; 23(10): 1306-1323, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358678

RESUMO

Breast cancer is one of the leading causes of mortality in women worldwide, and neoadjuvant chemotherapy has emerged as an option for the management of locally advanced breast cancer. Extensive efforts have been made to identify new molecular markers to predict the response to neoadjuvant chemotherapy. Transcripts that do not encode proteins, termed long noncoding RNAs (lncRNAs), have been shown to display abnormal expression profiles in different types of cancer, but their role as biomarkers in response to neoadjuvant chemotherapy has not been extensively studied. Herein, lncRNA expression was profiled using RNA sequencing in biopsies from patients who subsequently showed either response or no response to treatment. GATA3-AS1 was overexpressed in the nonresponder group and was the most stable feature when performing selection in multiple random forest models. GATA3-AS1 was experimentally validated by quantitative RT-PCR in an extended group of 68 patients. Expression analysis confirmed that GATA3-AS1 is overexpressed primarily in patients who were nonresponsive to neoadjuvant chemotherapy, with a sensitivity of 92.9% and a specificity of 75.0%. The statistical model was based on luminal B-like patients and adjusted by menopausal status and phenotype (odds ratio, 37.49; 95% CI, 6.74-208.42; P = 0.001); GATA3-AS1 was established as an independent predictor of response. Thus, lncRNA GATA3-AS1 is proposed as a potential predictive biomarker of nonresponse to neoadjuvant chemotherapy.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Transcrição GATA3/genética , Terapia Neoadjuvante/métodos , RNA Antissenso/genética , RNA Longo não Codificante/genética , Transcriptoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estudos de Coortes , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Pessoa de Meia-Idade , Prognóstico , RNA-Seq/métodos , Receptor ErbB-2/metabolismo , Resultado do Tratamento
4.
Mol Ther Nucleic Acids ; 20: 409-420, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32244168

RESUMO

MicroRNAs are small noncoding transcripts that posttranscriptionally regulate gene expression via base-pairing complementarity. Their role in cancer can be related to tumor suppression or oncogenic function. Moreover, they have been linked to processes recognized as hallmarks of cancer, such as apoptosis, invasion, metastasis, and proliferation. Particularly, one of the first oncomiRs found upregulated in a variety of cancers, such as gliomas, breast cancer, and colorectal cancer, was microRNA-21 (miR-21). Some of its target genes associated with cancer are PTEN (phosphatase and tensin homolog), PDCD4 (programmed cell death protein 4), RECK (reversion-inducing cysteine-rich protein with Kazal motifs), and STAT3 (signal transducer activator of transcription 3). As a result, miR-21 has been proposed as a plausible diagnostic and prognostic biomarker, as well as a therapeutic target for several types of cancer. Currently, research and clinical trials to inhibit miR-21 through anti-miR-21 oligonucleotides and ADM-21 are being conducted. As all of the evidence suggests, miR-21 is involved in carcinogenic processes; therefore, inhibiting it could have effects on more than one type of cancer. However, whether miR-21 can be used as a tissue-specific biomarker should be analyzed with caution. Consequently, the purpose of this review is to outline the available information and recent advances regarding miR-21 as a potential biomarker in the clinical setting and as a therapeutic target in cancer to highlight its importance in the era of precision medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA