Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Toxicol Pathol ; 51(4): 216-224, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37732701

RESUMO

The European Society of Toxicologic Pathology (ESTP) initiated a survey through its Pathology 2.0 workstream in partnership with sister professional societies in Europe and North America to generate a snapshot of artificial intelligence (AI) usage in the field of toxicologic pathology. In addition to demographic information, some general questions explored AI relative to (1) the current status of adoption across organizations; (2) technical and methodological aspects; (3) perceived business value and finally; and (4) roadblocks and perspectives. AI has become increasingly established in toxicologic pathology with most pathologists being supportive of its development despite some areas of uncertainty. A salient feature consisted of the variability of AI awareness and adoption among the responders, as the spectrum extended from pathologists having developed familiarity and technical skills in AI, to colleagues who had no interest in AI as a tool in toxicologic pathology. Despite a general enthusiasm for these techniques, the overall understanding and trust in AI algorithms as well as their added value in toxicologic pathology were generally low, suggesting room for the need for increased awareness and education. This survey will serve as a basis to evaluate the evolution of AI penetration and acceptance in this domain.


Assuntos
Inteligência Artificial , Patologistas , Humanos , Algoritmos , Europa (Continente)
2.
Toxicol Pathol ; 50(6): 793-807, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35950710

RESUMO

Digital toxicologic histopathology has been broadly adopted in preclinical compound development for informal consultation and peer review. There is now increased interest in implementing the technology for good laboratory practice-regulated study evaluations. However, the implementation is not straightforward because systems and work processes require qualification and validation, with consideration also given to security. As a result of the high-throughput, high-volume nature of safety evaluations, computer performance, ergonomics, efficiency, and integration with laboratory information management systems are further key considerations. The European Society of Toxicologic Pathology organized an international expert workshop with participation by toxicologic pathologists, quality assurance/regulatory experts, and information technology experts to discuss qualification and validation of digital histopathology systems in a good laboratory practice environment, and to share the resulting conclusions broadly in the toxicologic pathology community.


Assuntos
Patologia , Revisão por Pares , Humanos , Laboratórios , Patologistas
3.
Toxicol Pathol ; 50(4): 531-543, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35657014

RESUMO

The Society of Toxicologic Pathology's Scientific and Regulatory Policy Committee formed a working group to consider the present and future use of digital pathology in toxicologic pathology in general and specifically its use in primary evaluation and peer review in Good Laboratory Practice (GLP) environments. Digital histopathology systems can save costs by reducing travel, enhancing organizational flexibility, decreasing slide handling, improving collaboration, increasing access to historical images, and improving quality and efficiency through integration with laboratory information management systems. However, the resources to implement and operate a digital pathology system can be significant. Given the magnitude and risks involved in the decision to adopt digital histopathology, this working group used pertinent previously published survey results and its members' expertise to create a Points-to-Consider article to assist organizations with building and implementing digital pathology workflows. With the aim of providing a comprehensive perspective, the current publication summarizes aspects of digital whole-slide imaging relevant to nonclinical histopathology evaluations, and then presents points to consider applicable to both primary digital histopathology evaluation and digital peer review in GLP toxicology studies. The Supplemental Appendices provide additional tabulated resources.


Assuntos
Revisão por Pares , Toxicologia , Laboratórios , Políticas , Projetos de Pesquisa , Toxicologia/métodos
4.
Toxicol Pathol ; 50(3): 397-401, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35321602

RESUMO

Histopathologic evaluation and peer review using digital whole-slide images (WSIs) is a relatively new medium for assessing nonclinical toxicology studies in Good Laboratory Practice (GLP) environments. To better understand the present and future use of digital pathology in nonclinical toxicology studies, the Society of Toxicologic Pathology (STP) formed a working group to survey STP members with the goal of creating recommendations for implementation. The survey was administered in December 2019, immediately before the COVID-19 pandemic, and the results suggested that the use of digital histopathology for routine GLP histopathology assessment was not widespread. Subsequently, in follow-up correspondence during the pandemic, many responding institutions either began investigating or adopting digital WSI systems to reduce employee exposure to COVID-19. Therefore, the working group presents the survey results as a pre-pandemic baseline data set. Recommendations for use of WSI systems in GLP environments will be the subject of a separate publication.


Assuntos
COVID-19 , Toxicologia , Comunicação , Humanos , Pandemias , Revisão por Pares , Políticas , Toxicologia/métodos
5.
J Pathol Inform ; 12: 42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34881097

RESUMO

Whole slide imaging enables the use of a wide array of digital image analysis tools that are revolutionizing pathology. Recent advances in digital pathology and deep convolutional neural networks have created an enormous opportunity to improve workflow efficiency, provide more quantitative, objective, and consistent assessments of pathology datasets, and develop decision support systems. Such innovations are already making their way into clinical practice. However, the progress of machine learning - in particular, deep learning (DL) - has been rather slower in nonclinical toxicology studies. Histopathology data from toxicology studies are critical during the drug development process that is required by regulatory bodies to assess drug-related toxicity in laboratory animals and its impact on human safety in clinical trials. Due to the high volume of slides routinely evaluated, low-throughput, or narrowly performing DL methods that may work well in small-scale diagnostic studies or for the identification of a single abnormality are tedious and impractical for toxicologic pathology. Furthermore, regulatory requirements around good laboratory practice are a major hurdle for the adoption of DL in toxicologic pathology. This paper reviews the major DL concepts, emerging applications, and examples of DL in toxicologic pathology image analysis. We end with a discussion of specific challenges and directions for future research.

6.
Toxicol Pathol ; 48(2): 277-294, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31645203

RESUMO

Toxicologic pathology is transitioning from analog to digital methods. This transition seems inevitable due to a host of ongoing social and medical technological forces. Of these, artificial intelligence (AI) and in particular machine learning (ML) are globally disruptive, rapidly growing sectors of technology whose impact on the long-established field of histopathology is quickly being realized. The development of increasing numbers of algorithms, peering ever deeper into the histopathological space, has demonstrated to the scientific community that AI pathology platforms are now poised to truly impact the future of precision and personalized medicine. However, as with all great technological advances, there are implementation and adoption challenges. This review aims to define common and relevant AI and ML terminology, describe data generation and interpretation, outline current and potential future business cases, discuss validation and regulatory hurdles, and most importantly, propose how overcoming the challenges of this burgeoning technology may shape toxicologic pathology for years to come, enabling pathologists to contribute even more effectively to answering scientific questions and solving global health issues. [Box: see text].


Assuntos
Inteligência Artificial , Patologia/métodos , Toxicologia/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos
7.
Pharmacol Ther ; 200: 110-125, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31028836

RESUMO

Antibody-drug conjugates (ADCs) are a promising therapeutic modality for oncology indications. The concept of an ADC platform is to increase the therapeutic index (TI) of chemotherapeutics through more selective delivery of cytotoxic agents to tumor cells while limiting exposure to healthy normal cells. Despite the use of antibodies targeting antigens abundantly and/or exclusively expressed on cancer cells (i.e., target cells), dose limiting toxicities (DLTs) in normal cells/tissues are frequently reported even at suboptimal therapeutic doses. Although advancement of ADC technology has helped to optimize all three key components (i.e., mAb, linker, and payload), DLTs remain a key challenge for ADC development. Mechanisms of ADC toxicity in normal cells/tissues are not clearly understood, but the majority of DLTs are considered to be target-independent. In addition to linker-drug instability contributing to the premature release of cytotoxic drug (payload) in circulation, uptake/trafficking of intact ADCs by both receptor-dependent (FcγRs, FcRn and C-type lectin receptors), and-independent (non-specific endocytosis) mechanisms may contribute to off-target toxicity in normal cells. In this article, we review potential mechanisms of target-independent ADC uptake and toxicity in normal cells, as well as discuss components of ADCs which may influence these mechanisms. This information will provide a deeper understanding of the underlying mechanisms of ADC off-target toxicity and prove helpful toward improving the overall TI of the next generation of ADCs.


Assuntos
Imunoconjugados/efeitos adversos , Imunoconjugados/farmacocinética , Animais , Transporte Biológico , Humanos
8.
Vector Borne Zoonotic Dis ; 18(12): 697-703, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30109977

RESUMO

Schmallenberg virus (SBV) is an orthobunyavirus in the Simbu serogroup that emerged in Germany in late 2011 and was mostly associated with a mild transient disease of sheep and cattle. SBV is transmitted by biting midges (Culicoides species) and causes abortions, stillbirths, and congenital defects in naïve pregnant ruminants. Two separate studies were conducted with a primary objective of better understanding the virological and serological responses of sheep and cattle to different SBV isolates after experimental infection. The second objective was to produce immunoreagents and challenge materials for use in future vaccine and diagnostics research. These studies were carried out using the following infectious inocula: (i) infectious serum (IS) (ii) cell culture-grown virus, and (iii) infectious lamb brain homogenate. The responses were assessed in both species throughout the course of the experiment. SBV RNA in serum (RNAemia) was detected as early as 2 (in sheep) and 3 (in cattle) days postinfection (dpi) and peaked on 3 and 4 dpi in cattle and sheep, respectively. Cattle had higher levels of RNAemia compared with sheep. Experimental infection with IS resulted in the highest level of RNAemia in both species followed by cell culture-grown virus. A delayed, low level RNAemia was detected in cattle inoculated with infectious sheep brain. Isolation of SBV was only possible from 4 dpi sera from all cattle inoculated with IS and one sheep inoculated with cell culture-derived virus. SBV neutralizing antibodies were first detected on 14 dpi in both species. No specific gross and microscopic lesions were observed in either study. In conclusion, these studies highlight not only the difference in viremia and anti-SBV antibody level against the different SBV isolates, but also the extent of the response in the two host species.


Assuntos
Infecções por Bunyaviridae/veterinária , Doenças dos Bovinos/virologia , Orthobunyavirus/classificação , Doenças dos Ovinos/virologia , Animais , Anticorpos Antivirais/sangue , Infecções por Bunyaviridae/sangue , Infecções por Bunyaviridae/imunologia , Infecções por Bunyaviridae/virologia , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/imunologia , Orthobunyavirus/genética , Orthobunyavirus/imunologia , RNA Viral/sangue , Ovinos , Doenças dos Ovinos/sangue , Doenças dos Ovinos/imunologia
9.
Toxicology ; 383: 1-12, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28342779

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Calpaína/antagonistas & inibidores , Células Epiteliais/efeitos dos fármacos , Animais , Calpaína/genética , Calpaína/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Duodeno/patologia , Células Epiteliais/fisiologia , Indometacina/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Nitrobenzenos/toxicidade , RNA Interferente Pequeno/genética , Ratos Wistar , Sulfonamidas/toxicidade
10.
Virology ; 504: 25-35, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28142079

RESUMO

Although several studies have investigated the functions of influenza PA-X, the impact of different expressions of PA-X protein including full-length, truncated or PA-X deficient forms on virus replication, pathogenicity and host response remains unclear. Herein, we generated two mutated viruses expressing a full-length or deficient PA-X protein based on the A/California/04/2009 (H1N1) virus that expresses a truncated PA-X to understand three different expressions of PA-X protein on virus replication, pathogenicity and host immune responses. The results showed that expression of either full-length or truncated PA-X protein enhanced viral replication and pathogenicity as well as reduced host innate immune response in mice by host shutoff activity when compared to the virus expressing the deficient PA-X form. Furthermore, the full-length PA-X expression exhibited a greater effect on virus pathogenicity than the truncated PA-X form. Our results provide novel insights of PA-X on viral replication, pathogenicity and host immune responses.


Assuntos
Regulação Viral da Expressão Gênica/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/virologia , Proteínas Repressoras/genética , Proteínas não Estruturais Virais/genética , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cães , Feminino , Células HEK293 , Humanos , Inflamação/genética , Inflamação/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Mutação/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
11.
J Gen Virol ; 98(1): 31-42, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28008819

RESUMO

Although several studies have exploited the effects of PB1-F2 in swine influenza viruses, its contribution to the pathogenicity of swine influenza viruses remains unclear. Herein, we investigated the effects of PB1-F2 on the pathogenicity of influenza virus using a virulent H1N1 A/swine/Kansas/77778/2007 (KS07) virus, which expresses a full-length PB1-F2, in mice and pigs. Using reverse genetics, we generated the wild-type KS07 (KS07_WT), a PB1-F2 knockout mutant (KS07_K/O) and its N66S variant (KS07_N66S). KS07_K/O showed similar pathogenicity in mice to the KS07_WT, whereas KS07_N66S displayed enhanced virulence when compared to the other two viruses. KS07_WT exhibited more efficient replication in lungs and nasal shedding in infected pigs than the other two viruses. Pigs infected with the KS07_WT had higher pulmonary levels of granulocyte-macrophage colony-stimulating factor, IFN-γ, IL-6 and IL-8 at 3 and 5 days post-infection, as well as lower levels of IL-2, IL-4 and IL-12 at 1 day post-infection compared to those infected with the KS07_K/O. These results indicate that PB1-F2 modulates KS07 H1N1 virus replication, pathogenicity and innate immune responses in pigs and the single substitution at position 66 (N/S) in the PB1-F2 plays a critical role in virulence in mice. Taken together, our results provide new insights into the effects of PB1-F2 on the virulence of influenza virus in swine and support PB1-F2 as a virulence factor of influenza A virus in a strain- and host-dependent manner.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/veterinária , Proteínas Virais/genética , Animais , Linhagem Celular , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Suínos/imunologia , Suínos/virologia , Doenças dos Suínos/virologia , Virulência/genética , Fatores de Virulência/genética , Replicação Viral/genética
12.
J Am Vet Med Assoc ; 249(6): 668-77, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27585105

RESUMO

OBJECTIVE To investigate the effects of dietary supplementation with the ß-adrenoceptor agonists ractopamine hydrochloride and zilpaterol hydrochloride on ECG and clinicopathologic variables of finishing beef steers. DESIGN Randomized controlled trial. ANIMALS 30 Angus steers. PROCEDURES Steers were grouped by body weight and randomly assigned to receive 1 of 3 diets for 23 days: a diet containing no additive (control diet) or a diet containing ractopamine hydrochloride (300 mg/steer/d) or zilpaterol hydrochloride (8.3 mg/kg [3.8 mg/lb] of feed on a dry-matter basis), beginning on day 0. Steers were instrumented with an ambulatory ECG monitor on days -2, 6, 13, and 23, and continuous recordings were obtained for 72, 24, 24, and 96 hours, respectively. At the time of instrumentation, blood samples were obtained for CBC and serum biochemical and blood lactate analysis. Electrocardiographic recordings were evaluated for mean heart rate and arrhythmia rates. RESULTS Steers fed zilpaterol or ractopamine had greater mean heart rates than those fed the control diet. Mean heart rates were within reference limits for all steers, with the exception of those in the ractopamine group on day 14, in which mean heart rate was high. No differences in arrhythmia rates were identified among the groups, nor were any differences identified when arrhythmias were classified as single, paired, or multiple (> 2) beats. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that dietary supplementation of cattle with ractopamine or zilpaterol at FDA-approved doses had no effect on arrhythmia rates but caused an increase in heart rate that remained within reference limits.


Assuntos
Agonistas Adrenérgicos beta/administração & dosagem , Bovinos/fisiologia , Suplementos Nutricionais , Fenetilaminas/administração & dosagem , Compostos de Trimetilsilil/administração & dosagem , Agonistas Adrenérgicos beta/farmacologia , Criação de Animais Domésticos , Animais , Pressão Sanguínea/efeitos dos fármacos , Dieta/veterinária , Frequência Cardíaca/efeitos dos fármacos , Kansas , Masculino , Fenetilaminas/farmacologia , Resultado do Tratamento , Compostos de Trimetilsilil/farmacologia
13.
Brain Res ; 1650: 162-171, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581393

RESUMO

Tottering mutant mice carry a mutation in the pore-forming subunit (α1A) of CaV2.1 (P/Q-type) voltage-gated calcium ion (Ca2+) channels resulting in reduced neuronal Ca2+ current density. We assessed male tottering mice for spatial learning using the Morris water maze. Tottering mice performed worse than wild type mice, suggesting abnormal hippocampal function. Because Ca2+ influx via voltage-dependent Ca2+ channels regulates neuronal survival and function, we assessed hippocampus volume and cell density using hematoxylin and eosin stained serial sections. Adult hippocampal neurogenesis was assessed using 5-bromo-2'-deoxyuridine (BrdU) labeling with fluorescent immunohistochemistry (IHC) and proliferating cell nuclear antigen (PCNA) with diaminobenzidine IHC. We double-labeled neurons using fluorescence IHC with BrdU-neuronal nuclei (Neu-N) or double labeling of astrocytes using BrdU-glial fibrillary protein, respectively, to assess cell proliferation and survival. We assessed numbers of dying cells using fluoro-Jade histochemistry. Decreased hippocampal volume, increased dentate hilar and hippocampal CA1 cell densities were observed in tottering mice compared to wild type mice. Cell proliferation was increased in the hilus and CA2 region of tottering mice compared to wild type mice. Dendritic intersections in Sholl analysis were decreased for tottering mouse CA1 pyramidal neurons compared to wild type mice. The increased regional cell density coincides with increases in cell proliferation in similar, non-neurogenic areas of the hippocampus of tottering mice. Thus, hippocampal alterations observed in adult tottering mice appear to result from changes in neuronal morphology and proliferation in non-neurogenic areas of the hippocampus, and less through altered adult hippocampal neurogenesis or cell death.


Assuntos
Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Animais , Bromodesoxiuridina , Cálcio/metabolismo , Proliferação de Células , Sobrevivência Celular , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Neurônios/metabolismo , Aprendizagem Espacial
14.
Sci Rep ; 6: 27719, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27296136

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts.


Assuntos
Glicoproteínas/imunologia , Proteínas Recombinantes/imunologia , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/metabolismo , Doenças dos Ovinos/prevenção & controle , Ovinos/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Formação de Anticorpos/imunologia , Imunoglobulina G/sangue , Fígado/patologia , Linfonodos/patologia , Febre do Vale de Rift/sangue , Vírus da Febre do Vale do Rift/patogenicidade , Ovinos/virologia , Doenças dos Ovinos/sangue , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/virologia , Temperatura , Viremia/imunologia , Virulência
15.
Clin Vaccine Immunol ; 22(12): 1244-54, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26446422

RESUMO

Coinfections involving porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) contribute to a group of disease syndromes known as porcine circovirus-associated disease (PCVAD). Presumably, PRRSV infection enhances PCV2 replication as a result of modulation of host immunity. The purpose of this study was to evaluate PCV2 replication and pathogenesis in pigs vaccinated with a PRRS modified live virus (MLV) vaccine and subsequently challenged with a combination of PRRSV and PCV2. During the early postchallenge period, the number of pigs with PRRSV-associated clinical signs was decreased, and average daily gain (ADG) was increased, in the vaccinated group, demonstrating the protective effect of PRRS vaccination. However, during the later postchallenge period, more pigs in the vaccinated group showed increased PCV2 viremia, decreased ADG, increased PCVAD clinical signs, and increased mortality. In this disease model, the early benefits of PRRSV vaccination were outweighed by the later amplification of PCVAD.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/fisiologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/prevenção & controle , Circovirus/imunologia , Coinfecção/veterinária , Coinfecção/virologia , Modelos Animais de Doenças , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Sus scrofa , Suínos , Doenças dos Suínos/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Virais/administração & dosagem , Viremia/prevenção & controle , Viremia/veterinária , Replicação Viral
16.
J Am Vet Med Assoc ; 247(1): 66-72, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26086230

RESUMO

Ensuring appropriate animal welfare is a high priority for the beef industry, and poorly defined abnormalities in the mobility of cattle at abattoirs have gained considerable attention recently. During the summer of 2013, abattoirs throughout the United States reported concerns about nonambulatory or slow and difficult to move cattle and cattle that sloughed hoof walls. This report describes various cattle that developed these mobility problems soon after arrival at an abattoir. Affected cattle had various clinical signs including tachypnea with an abdominal component to breathing, lameness, and reluctance to move. Some cattle sloughed 1 or more hoof walls while in lairage pens and were euthanized. Other cattle recovered after being rested overnight. Affected cattle had serum lactate concentration and creatine kinase activity increased from reference ranges. Histologic findings included diffuse necrosis of the epidermal laminae with degenerate collagen and perivascular infiltration of neutrophils in the underlying deep dermis, and were similar for digits that had and had not sloughed the hoof wall. With the exception of the sloughed hoof walls, the clinical signs and serum biochemical abnormalities observed in affected cattle were similar to those observed in pigs with fatigued pig syndrome, and we propose that fatigued cattle syndrome be used to describe such cattle. Although anecdotal evidence generated concern that cattle fed the ß-adrenergic receptor agonist zilpaterol hydrochloride were at greater risk of developing mobility problems, compared with cattle not fed zilpaterol, this condition is likely multifactorial. Strategies to prevent this condition are needed to protect the welfare of cattle.


Assuntos
Doenças dos Bovinos/patologia , Fadiga/veterinária , Doenças do Pé/veterinária , Meios de Transporte , Matadouros , Criação de Animais Domésticos , Animais , Bovinos , Fadiga/patologia , Doenças do Pé/patologia , Casco e Garras , Masculino
17.
J Virol ; 89(14): 7401-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25926639
18.
J Virol ; 89(9): 4818-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25673727

RESUMO

UNLABELLED: Influenza B virus (IBV) causes seasonal epidemics in humans. Although IBV has been isolated from seals, humans are considered the primary host and reservoir of this important pathogen. It is unclear whether other animal species can support the replication of IBV and serve as a reservoir. Swine are naturally infected with both influenza A and C viruses. To determine the susceptibility of pigs to IBV infection, we conducted a serological survey for U.S. Midwest domestic swine herds from 2010 to 2012. Results of this study showed that antibodies to IBVs were detected in 38.5% (20/52) of sampled farms, and 7.3% (41/560) of tested swine serum samples were positive for IBV antibodies. Furthermore, swine herds infected with porcine reproductive and respiratory syndrome virus (PRRSV) showed a higher prevalence of IBV antibodies in our 2014 survey. In addition, IBV was detected in 3 nasal swabs collected from PRRSV-seropositive pigs by real-time RT-PCR and sequencing. Finally, an experimental infection in pigs, via intranasal and intratracheal routes, was performed using one representative virus from each of the two genetically and antigenically distinct lineages of IBVs: B/Brisbane/60/2008 (Victoria lineage) and B/Yamagata/16/1988 (Yamagata lineage). Pigs developed influenza-like symptoms and lung lesions, and they seroconverted after virus inoculation. Pigs infected with B/Brisbane/60/2008 virus successfully transmitted the virus to sentinel animals. Taken together, our data demonstrate that pigs are susceptible to IBV infection; therefore, they warrant further surveillance and investigation of swine as a potential host for human IBV. IMPORTANCE: IBV is an important human pathogen, but its ability to infect other species, for example, pigs, is not well understood. We showed serological evidence that antibodies to two genetically and antigenically distinct lineages of IBVs were present among domestic pigs, especially in swine herds previously infected with PRRSV, an immunosuppressive virus. IBV was detected in 3 nasal swabs from PRRSV-seropositive pigs by real-time reverse transcription-PCR and sequencing. Moreover, both lineages of IBV were able to infect pigs under experimental conditions, with transmissibility of influenza B/Victoria lineage virus among pigs being observed. Our results demonstrate that pigs are susceptible to IBV infections, indicating that IBV is a swine pathogen, and swine may serve as a natural reservoir of IBVs. In addition, pigs may serve as a model to study the mechanisms of transmission and pathogenesis of IBVs.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Influenza B/imunologia , Infecções por Orthomyxoviridae/veterinária , Sus scrofa , Animais , Vírus da Influenza B/isolamento & purificação , Pulmão/patologia , Pulmão/virologia , Meio-Oeste dos Estados Unidos/epidemiologia , Mucosa Nasal/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Estudos Soroepidemiológicos
19.
J Virol ; 89(5): 2831-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25540372

RESUMO

UNLABELLED: At least 10 different genotypes of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 [A(H1N1)pdm09] gene(s) have been identified in U.S. pigs, including the H3N2 variant with a single A(H1N1)pdm09 M gene, which has infected more than 300 people. To date, only three genotypes of these viruses have been evaluated in animal models, and the pathogenicity and transmissibility of the other seven genotype viruses remain unknown. Here, we show that three H3N2 reassortant viruses that contain 3 (NP, M, and NS) or 5 (PA, PB2, NP, M, and NS) genes from A(H1N1)pdm09 were pathogenic in pigs, similar to the endemic H3N2 swine virus. However, the reassortant H3N2 virus with 3 A(H1N1)pdm09 genes and a recent human influenza virus N2 gene was transmitted most efficiently among pigs, whereas the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes was transmitted less efficiently than the endemic H3N2 virus. Interestingly, the polymerase complex of reassortant H3N2 virus with 5 A(H1N1)pdm09 genes showed significantly higher polymerase activity than those of endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies showed that an avian-like glycine at position 228 at the hemagglutinin (HA) receptor binding site is responsible for inefficient transmission of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes. Taken together, our results provide insights into the pathogenicity and transmissibility of novel reassortant H3N2 viruses in pigs and suggest that a mammalian-like serine at position 228 in the HA is critical for the transmissibility of these reassortant H3N2 viruses. IMPORTANCE: Swine influenza is a highly contagious zoonotic disease that threatens animal and public health. Introduction of 2009 pandemic H1N1 virus [A(H1N1)pdm09] into swine herds has resulted in novel reassortant influenza viruses in swine, including H3N2 and H1N2 variants that have caused human infections in the United States. We showed that reassortant H3N2 influenza viruses with 3 or 5 genes from A(H1N1)pdm09 isolated from diseased pigs are pathogenic and transmissible in pigs, but the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes displayed less efficient transmissibility than the endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies revealed that an avian-like glycine at the HA 228 receptor binding site of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes is responsible for less efficient transmissibility in pigs. Our results provide insights into viral pathogenesis and the transmission of novel reassortant H3N2 viruses that are circulating in U.S. swine herds and warrant future surveillance.


Assuntos
Vírus da Influenza A Subtipo H3N2/fisiologia , Vírus da Influenza A Subtipo H3N2/patogenicidade , Infecções por Orthomyxoviridae/veterinária , Vírus Reordenados/fisiologia , Vírus Reordenados/patogenicidade , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia , Animais , Modelos Animais de Doenças , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Suínos , Estados Unidos
20.
PLoS Pathog ; 10(10): e1004420, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25275541

RESUMO

Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.


Assuntos
Quirópteros/virologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae , Replicação Viral/genética , Animais , Linhagem Celular , Humanos , Camundongos , Suínos , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA