RESUMO
Cortical bone and dentine share similarities in their embryological origin, development, and genetic background. Few analyses have combined the study of cortical bone and dentine to quantify their covariation relative to endogenous and exogenous factors. However, knowing how these tissues relate in individuals is of great importance to decipher the factors acting on their evolution, and ultimately to understand the mechanisms responsible for the different patterns of tissue proportions shown in hominins. The aims of this study are to examine age-, sex-, and ancestry-related variation in cortical bone and dentine volumes, and to preliminary assess the possible covariation between these tissues in modern humans and in five composite Neandertals. The modern analytical sample includes 12 immature individuals from France and 49 adults from France and South Africa. Three-dimensional tissue proportions were assessed from microtomographic records of radii and permanent maxillary canines. Results suggest ontogenic differences and a strong sexual dimorphism in cortical bone and dentine developments. The developmental pattern of dentine also seems to vary according to individual's ancestry. We measure a stronger covariation signal between cortical bone and dentine volumes than with any other dental tissue. A more complex covariation pattern is shown when splitting the modern sample by age, sex, and ancestry, as no signal is found in some subsamples while others show a covariation between cortical bone and either crown or radicular dentine. Finally, no difference in cortical bone volume is noticed between the modern young adults and the five young adult composite Neandertals from Marine Isotopic Stages (MIS) 5 and 3. Greater dentine Cortical bone and dentine (co)variation volumes are measured in the MIS 5 chimeric Neandertals whereas a strong interpopulation variation in dentine thickness is noticed in the MIS 3 chimeric Neandertals. Further research on the cortical bonedentine covariation will increase understanding of the impact of endogenous and exogenous factors on the development of the mineralized tissues.
RESUMO
Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.
Assuntos
Arqueologia , Genoma Humano , Genômica , Genética Humana , Caça , Paleontologia , Humanos , Europa (Continente)/etnologia , Pool Gênico , História Antiga , Genoma Humano/genéticaRESUMO
Higher education in evolutionary anthropology involves providing students with in-depth knowledge of biological and cultural heritage sites and collections that are frequently inaccessible. Indeed, most sites, fossils, and archaeological remains can be visited or manipulated only rarely and solely by specialists with extensive experience. Owing to the development of 3D and medical imaging techniques, this fragile heritage is now more widely accessible, and in a dynamic way. However, exclusive adoption of virtual teaching and learning has a negative impact on student engagement and, naturally, on exchanges with instructors, and thus cannot be used without some reservations. In the ITAP (Immersion dans les Terrains de l'Anthropologie biologique et de la Préhistoire) project of the higher education STEP (Soutien à la Transformation et à l'Expérimentation Pédagogiques) transformation program at the University of Bordeaux, we combine student-active teaching with Master's students fully immersed in ongoing fieldwork, laboratory study, and dissemination of research results in order to develop more individually shaped learning curricula and to foster both professional and new interdisciplinary skills. Here, we present examples of experiments conducted in the ITAP project using both authentic and virtual collections of archaeological, experimental, and reference materials that help to break down the barriers between research activities and higher education, as well as providing a more general appraisal of the appropriate use of virtual tools in higher education by combining them with real-life situations.
RESUMO
The aim of this article is to describe the composition of the Tooth Fairy collection (collection Petite souris as it is known in French), a documented sample of deciduous teeth from individuals with known kinship curated at the University of Bordeaux (France). Since 2014, we have collected naturally exfoliated deciduous teeth from French children of known kinship and life histories. The life-history records include date and place of birth, sex, birth weight, and length, weight measurements during the first 6 months of life, whether the child was born premature or full-term, delivery conditions, and dietary information including weaning age. Data collection and exploitation was approved by the French authority Commission Nationale de l'Informatique et des Libertés. The collection, which is still expanding, is currently composed of 995 deciduous teeth belonging to 99 individuals from 42 families. The sample includes 61 female individuals and 38 male individuals, born between 1953 and 2013, the majority from France. Siblings are the most represented kinship type within the collection. The Tooth Fairy collection of deciduous teeth from individuals with known life history and kinship offers a unique window into the variation in human growth. Available for macro-, meso-, and microstructural analysis, the collection offers new insights into the multiple factors influencing dental growth, human variation, and diet, especially around birth and during early postnatal life. This collection is particularly relevant for studies in forensic, dental, and biological anthropology.
Assuntos
Antropologia Física , Dente Decíduo , Criança , Gravidez , Humanos , Masculino , Feminino , Peso ao Nascer , Parto , FrançaRESUMO
OBJECTIVE: To investigate and describe the variation in enamel daily secretion rates (DSRs) of naturally exfoliated deciduous molars (n = 345) from five modern-day populations (Aotearoa New Zealand, Britain, Canada, France, and Sweden). DESIGN: Each tooth was thin sectioned and examined using a high-powered Olympus BX51 microscope and DP25 digital microscope camera. Mean DSRs were recorded for the inner, mid, and outer regions of cuspal and lateral enamel, excluding enamel nearest the enamel-dentin junction and at the outermost crown surface. RESULTS: Mean DSRs did not vary significantly between populations, or by sex. Cuspal enamel grew slightly faster than lateral enamel (mean difference 0.16 µm per day; p < 0.001). The trajectory of DSRs remained relatively constant from inner to outer cuspal enamel and increased slightly in lateral enamel (p = 0.003). CONCLUSIONS: The DSRs of deciduous molars from modern-day children are remarkably consistent when compared among populations. While growth rates are faster in cuspal than lateral enamel, the trajectory of enamel formation changes only slightly from inner to outer regions. The trajectory of DSRs for deciduous molars differs to that of permanent molar enamel, which typically display a steep increase in matrix deposition from inner to outer enamel.
Assuntos
Esmalte Dentário , Dente , Criança , Humanos , Dente Molar , Coroa do Dente , Dente Decíduo , Fatores de TranscriçãoRESUMO
OBJECTIVES: Human tooth enamel retains evidence of growth in the form of Retzius lines. The number of daily growth increments between the regularly occurring lines defines their repeat interval, or periodicity. Retzius periodicity is often incorporated into enamel formation times, age-at-death reconstructions, or used to provide a basis from which to explore an underlying biorhythm. Biological anthropologists typically assume that RP remains constant within an individual and does not vary along the tooth-row. Here, we test that assumption. MATERIALS AND METHODS: RP was calculated from n = 223 thin sections of human permanent teeth from individuals of British and southern African origin. Forty individuals provided multiple teeth (n = 102 teeth) and a further 121 individuals each provided a single tooth. RESULTS: We report first evidence that RP of permanent teeth does not always remain constant within an individual. Of those individuals that provided multiple teeth, 42% (n = 17/40) demonstrated a decrease in RP along the tooth row, with most shifting by two or more days (n = 11). Across the entire sample, mean RP of anterior teeth was significantly higher than molars. Mean premolar RP tended to be intermediate between anterior teeth and molars. DISCUSSION: Our data do not support the assumption that RP invariably remains constant within the permanent teeth of an individual. Transferring RP from molars to incisors within an individual can result in a miscalculation of formation time and age-at-death by up to 1 year. Implications for biological anthropologists and the source of the underlying long period biorhythm are discussed.
Assuntos
Esmalte Dentário , Incisivo , Dente Molar , Periodicidade , Antropologia Física , Esmalte Dentário/anatomia & histologia , Esmalte Dentário/crescimento & desenvolvimento , Dentição Permanente , Feminino , Humanos , Incisivo/anatomia & histologia , Incisivo/crescimento & desenvolvimento , Masculino , Modelos Estatísticos , Dente Molar/anatomia & histologia , Dente Molar/crescimento & desenvolvimentoRESUMO
Dental enamel thickness, topography, growth and development vary among hominins. In Homo, the thickness of dental enamel in most Pleistocene hominins display variations from thick to hyper-thick, while Neanderthals exhibit proportionally thinner enamel. The origin of the thin trait remains unclear. In this context, the Middle Pleistocene human dental assemblage from Atapuerca-Sima de los Huesos (SH) provides a unique opportunity to trace the evolution of enamel thickness in European hominins. In this study, we aim to test the hypothesis if the SH molar sample approximates the Neanderthal condition for enamel thickness and/or distribution. This study includes 626 molars, both original and comparative data. We analysed the molar inner structural organization of the original collections (n = 124), belonging to SH(n = 72) and modern humans from Spanish origin (n = 52). We compared the SH estimates to those of extinct and extant populations of the genus Homo from African, Asian and European origin (estimates extracted from literature n = 502). The comparative sample included maxillary and mandibular molars belonging to H. erectus, East and North African Homo, European Middle Pleistocene Homo, Neanderthals, and fossil and extant H. sapiens. We used high-resolution images to investigate the endostructural configuration of SH molars (tissue proportions, enamel thickness and distribution). The SH molars exhibit on average thick absolute and relative enamel in 2D and 3D estimates, both in the complete crown and the lateral enamel. This primitive condition is shared with the majority of extinct and extant hominin sample, except for Neanderthals and some isolated specimens. On the contrary, the SH molar enamel distribution maps reveal a distribution pattern similar to the Neanderthal signal (with thicker enamel on the lingual cusps and more peripherally distributed), compared to H. antecessor and modern humans. Due to the phylogenetic position of the SH population, the thick condition in molars could represent the persistence of the plesiomorphic condition in this group. Still, more data is needed on other Early and Middle Pleistocene populations to fully understand the evolutionary meaning of this trait.
Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Dente Molar/anatomia & histologia , Animais , Evolução Biológica , Esmalte Dentário/anatomia & histologia , Esmalte Dentário/metabolismo , Humanos , Dente Molar/metabolismo , Homem de Neandertal , Filogenia , Espanha , Dente , Coroa do Dente/anatomia & histologia , Coroa do Dente/metabolismoRESUMO
OBJECTIVES: Here we describe the case of an ectopic maxillary third molar (M3 ), preventing the eruption of the M2 , in the individual H3 of the hominin hypodigm of level TD6.2 of the Early Pleistocene site of Gran Dolina (Sierra de Atapuerca, Spain). MATERIALS AND METHODS: The fossil remains from the TD6.2 level of the Gran Dolina site (about 170 specimens) are assigned to Homo antecessor. Different geochronological methods place these hominins in the oxygen isotopic stage 21, between 0.8 and 0.85 million years ago (Ma). The immature individual H3 is represented by an almost complete midface (ATD6-69), preserving various teeth in situ. We used high-resolution microtomograhy (mCT) to investigate the abnormal position of the left M3 , virtually reconstruct M2 , and M3 as well as assessing the development stage of these. Finally, we compare this case with extinct and extant populations. RESULTS: Based on the identified signs, we suggest that individual H3 suffered from a unilateral impaction of the M2 as a result of the ectopic position of the developing M3 . DISCUSSION: We conclude that the most likely etiology for the ectopic position of the M3 is the lack of space in the maxilla. We discuss possible contributing factors, such as morphometric aspects of the maxilla and the early mineralization of the M3 , to support the M2 impaction. Finally, due to the early age at death of this individual we did not identify any secondary lesion associated with the M2 impaction.
Assuntos
Hominidae , Maxila/patologia , Dente Molar/patologia , Erupção Ectópica de Dente/veterinária , Animais , Dente Molar/fisiologia , Espanha , Erupção Ectópica de Dente/patologiaRESUMO
INTRODUCTION: Along the Mesoamerican western margin, the Zacapu basin has yielded a large number of human remains demonstrating usage of artificial cranial modification (ACM). However, at the onset of the Middle Postclassic (1200-1400 AD) only few individuals still exhibit clear signs of ACM. Some authors have suggested that, rather than disappearing entirely, ACM may have become less visible anatomically, making it difficult to identify based on simple visual analyses. Here, we used 3D geometric morphometric methods to investigate the extent to which ACM persisted during the Postclassic in this region. MATERIALS AND METHODS: We measured the 3D vault's shape changes in a sample of surface-scanned human crania: 55 individuals from the Postclassic Zacapu basin and a control group of 31 individuals from a Huichol Mexican Indian sample and a French medieval series from La Granède. We used a principal component analysis to explore the shape variation within the sample and employed the neighbor joining method to identify morphological groups. Finally, we quantified each individual's asymmetry. RESULTS: We identified three groups displaying shape features diverging from those of the control group. The first group is characterized by marked fronto-obelionic ACM, whereas the other two show mild forms of ACM. The individuals in all three groups display moderate to high degrees of asymmetry compared to the control group. DISCUSSION: The marked fronto-obelionic modification is clear evidence of a specific ACM technique. The two types of mild ACM most likely result from different techniques but their moderate degree of modification brings into question the intentions behind their production.
Assuntos
Modificação Corporal não Terapêutica/história , Indígenas Norte-Americanos , Crânio/anatomia & histologia , Arqueologia , História Medieval , Humanos , MéxicoRESUMO
Wezmeh Cave, in the Kermanshah region of Central Western Zagros, Iran, produced a Late Pleistocene faunal assemblage rich in carnivorans along with a human right maxillary premolar, Wezmeh 1, an unerupted tooth from an 8 ± 2 year-old individual. Uranium-series analyses of the fauna by alpha spectrometry provided age estimates between 70 and 11 ka. Crown dimensions place the tooth specimen at the upper limits of Late Pleistocene human ranges of variation. Wezmeh 1 metameric position (most likely a P3) remains uncertain and only its surficial morphology has been described so far. Accordingly, we used microfocus X-ray tomography (12.5 µm isotropic voxel size) to reassess the metameric position and taxonomic attribution of this specimen. We investigated its endostructural features and quantified crown tissue proportions. Topographic maps of enamel thickness (ET) distribution were also generated, and semilandmark-based geometric morphometric analyses of the enamel-dentine junction (EDJ) were performed. We compared Wezmeh 1 with unworn/slightly-moderately worn P3 and P4 of European Neanderthals, Middle Paleolithic modern humans from Qafzeh, an Upper Paleolithic premolar, and Holocene humans. The results confirm that Wezmeh 1 represents a P3. Based on its internal conformation and especially EDJ shape, Wezmeh 1 aligns closely with Neanderthals and is distinct from the fossil and extant modern human pattern of our comparative samples. Wezmeh 1 is thus the first direct evidence of Neanderthal presence on the western margin of the Iranian Plateau.
Assuntos
Dente Pré-Molar/anatomia & histologia , Fósseis/anatomia & histologia , Homem de Neandertal/anatomia & histologia , Animais , Arqueologia , Irã (Geográfico) , MaxilaRESUMO
OBJECTIVES: The immature partial mandible GAR IVE from the c. 1.7 Ma old Garba IV site at Melka Kunture (Upper Awash Basin, Ethiopia), the earliest human representative from a mountain-like environment, represents one of the oldest early Homo specimens bearing a mixed dentition. Following its first description (Condemi, ), we extended the analytical and comparative record of this specimen by providing unreported details about its inner morphology, tooth maturational pattern and age at death, crown size, and tooth tissue proportions. MATERIALS AND METHODS: The new body of quantitative structural information and virtual imaging derives from a medical CT record performed in 2013. RESULTS: Compared to the extant human condition and to some fossil representatives of comparable individual age, the GAR IVE mandible reveals absolutely and relatively thick cortical bone. Crown size of the permanent lateral incisor and the canine fit the estimates of H. erectus s.l., while the dm2 and the M1 more closely approach those of H. habilis-rudolfensis. Molar crown pulp volumes are lower than reported in other fossil specimens and in extant humans. The mineralization sequence of the permanent tooth elements is represented four times in our reference sample of extant immature individuals (N = 795). CONCLUSIONS: The tooth developmental pattern displayed by the immature individual from Garba IV falls within the range of variation of extant human populations and is also comparable with that of other very young early fossil hominins. Taken together, the evidence presented here for mandibular morphology and dental development suggest GAR IVE is a robust 2.5- to 3.5-year old early Homo specimen.
Assuntos
Fósseis , Hominidae/anatomia & histologia , Mandíbula/anatomia & histologia , Dente/anatomia & histologia , Dente/crescimento & desenvolvimento , Animais , Etiópia , Hominidae/crescimento & desenvolvimento , Mandíbula/crescimento & desenvolvimentoRESUMO
Variations in the dental crown form are widely studied to interpret evolutionary changes in primates as well as to assess affinities among human archeological populations. Compared to external metrics of dental crown size and shape, variables including the internal structures such as enamel thickness, tissue proportions, and the three-dimensional shape of enamel-dentin junction (EDJ), have been described as powerful measurements to study taxonomy, phylogenetic relationships, dietary, and/or developmental patterns. In addition to providing good estimate of phenotypic distances within/across archeological samples, these internal tooth variables may help to understand phylogenetic, functional, and developmental underlying causes of variation. In this study, a high resolution microtomographic-based record of upper permanent second molars from 20 Neolithic individuals of the necropolis of Gurgy (France) was applied to evaluate the intrasite phenotypic variation in crown tissue proportions, thickness and distribution of enamel, and EDJ shape. The study aims to compare interindividual dental variations with burial practices and chronocultural parameters, and suggest underlying causes of these dental variations. From the non-invasive characterization of internal tooth structure, differences have been found between individuals buried in pits with alcove and those buried in pits with container and pits with wattling. Additionally, individuals from early and recent phases of the necropolis have been distinguished from those of the principal phase from their crown tissue proportions and EDJ shape. The results suggest that the internal tooth structure may be a reliable proxy to track groups sharing similar chronocultural and burial practices. In particular, from the EDJ shape analysis, individuals buried in an alcove shared a reduction of the distolingual dentin horn tip (corresponding to the hypocone). Environmental, developmental and/or functional underlying causes might be suggested for the origin of phenotypic differences shared by these individuals buried in alcoves.
Assuntos
Sepultamento , Fósseis , Dente Molar/anatomia & histologia , Dente Molar/diagnóstico por imagem , Animais , Sepultamento/história , Análise por Conglomerados , Esmalte Dentário , Feminino , França , História Antiga , Humanos , Masculino , Microtomografia por Raio-XRESUMO
Despite numerous sites of great antiquity having been excavated since the end of the 19th century, Middle Pleistocene human fossils are still extremely rare in northwestern Europe. Apart from the two partial crania from Biache-Saint-Vaast in northern France, all known human fossils from this period have been found from ten sites in either Germany or England. Here we report the discovery of three long bones from the same left upper limb discovered at the open-air site of Tourville-la-Rivière in the Seine Valley of northern France. New U-series and combined US-ESR dating on animal teeth produced an age range for the site of 183 to 236 ka. In combination with paleoecological indicators, they indicate an age toward the end of MIS 7. The human remains from Tourville-la-Rivière are attributable to the Neandertal lineage based on morphological and metric analyses. An abnormal crest on the left humerus represents a deltoid muscle enthesis. Micro- and or macro-traumas connected to repetitive movements similar to those documented for professional throwing athletes could be origin of abnormality.
Assuntos
Fósseis , Hominidae/anatomia & histologia , Animais , Arqueologia , França , HumanosRESUMO
Enamel thickness has been linked to functional aspects of masticatory biomechanics and has been demonstrated to be an evolutionary plastic trait, selectively responsive to dietary changes, wear and tooth fracture. European Late Paleolithic and Mesolithic hunter-gatherers mainly show a flat wear pattern, while oblique molar wear has been reported as characteristic of Neolithic agriculturalists. We investigate the relationships between enamel thickness distribution and molar wear pattern in two Neolithic and medieval populations. Under the assumption that dietary and/or non-dietary constraints result in directional selective pressure leading to variations in enamel thickness, we test the hypothesis that these two populations will exhibit significant differences in wear and enamel thickness patterns. Occlusal wear patterns were scored in upper permanent second molars (UM2) of 64 Neolithic and 311 medieval subadult and adult individuals. Enamel thickness was evaluated by microtomography in subsamples of 17 Neolithic and 25 medieval individuals. Eight variables describing enamel thickness were assessed. The results show that oblique molar wear is dominant in the Neolithic sample (87%), while oblique wear affects only a minority (42%) of the medieval sample. Moreover, in the Neolithic molars, where buccolingually directed oblique wear is dominant and greatest enamel lost occurs in the distolingual quadrant, thickest enamel is found where occlusal stresses are the most important-on the distolingual cusp. These results reveal a correlation between molar wear pattern and enamel thickness that has been associated to dietary changes. In particular, relatively thicker molar enamel may have evolved as a plastic response to resist wear.
Assuntos
Esmalte Dentário/patologia , Dente Molar/patologia , Desgaste dos Dentes/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Esmalte Dentário/diagnóstico por imagem , Feminino , França , História Antiga , História Medieval , Humanos , Masculino , Dente Molar/diagnóstico por imagem , Desgaste dos Dentes/diagnóstico por imagem , Desgaste dos Dentes/história , Microtomografia por Raio-X , Adulto JovemRESUMO
Fieldwork performed during the last 15 years in various Early Pleistocene East African sites has significantly enlarged the fossil record of Homo erectus sensu lato (s.l.). Additional evidence comes from the Danakil Depression of Eritrea, where over 200 late Early to early Middle Pleistocene sites have been identified within a â¼1000 m-thick sedimentary succession outcropping in the Dandiero Rift Basin, near Buia. Along with an adult cranium (UA 31), which displays a blend of H. erectus-like and derived morpho-architectural features and three pelvic remains, two isolated permanent incisors (UA 222 and UA 369) have also been recovered from the 1 Ma (millions of years ago) Homo-bearing outcrop of Uadi Aalad. Since 2010, our surveys have expanded to the nearby (4.7 km) site of Mulhuli-Amo (MA). This is a fossiliferous area that has been preliminarily surveyed because of its exceptional concentration of Acheulean stone tools. So far, the site has yielded 10 human remains, including the unworn crown of a lower permanent molar (MA 93). Using diverse analytical tools (including high resolution µCT and µMRI), we analysed the external and internal macromorphology and microstructure of the three specimens, and whenever possible compared the results with similar evidence from early Homo, H. erectus s.l., H. antecessor, H. heidelbergensis (from North Africa), Neanderthals and modern humans. We also assessed the UA 369 lower incisor from Uadi Aalad for root completion timing and showed that it compares well with data for root apex closure in modern human populations.
Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Incisivo/anatomia & histologia , Dente Molar/anatomia & histologia , Animais , Eritreia , Fósseis/diagnóstico por imagem , Imageamento por Ressonância Magnética , Microtomografia por Raio-XRESUMO
The bouffia Bonneval at La Chapelle-aux-Saints is well known for the discovery of the first secure Neandertal burial in the early 20th century. However, the intentionality of the burial remains an issue of some debate. Here, we present the results of a 12-y fieldwork project, along with a taphonomic analysis of the human remains, designed to assess the funerary context of the La Chapelle-aux-Saints Neandertal. We have established the anthropogenic nature of the burial pit and underlined the taphonomic evidence of a rapid burial of the body. These multiple lines of evidence support the hypothesis of an intentional burial. Finally, the discovery of skeletal elements belonging to the original La Chapelle aux Saints 1 individual, two additional young individuals, and a second adult in the bouffia Bonneval highlights a more complex site-formation history than previously proposed.
Assuntos
Arqueologia/métodos , Sepultamento/história , Homem de Neandertal , Paleontologia/métodos , Animais , Osso e Ossos , Fósseis , França , História Antiga , HumanosRESUMO
Additional Middle Paleolithic human remains from layers 17, 18, and 22 of the Gruta da Oliveira, Portugal consist of a proximal manual phalanx 2 (Oliveira 5), a partial postcanine tooth (Oliveira 6), a humeral diaphysis (Oliveira 7), a distal mandibular molar (Oliveira 8), and a mandibular premolar (P(3) ) (Oliveira 9). Oliveira 5, 6, and 8 are unremarkable for Late Pleistocene humans. The Oliveira 7 right humerus is moderately robust or the individual had the stocky body proportions of other European (including Iberian) Neandertals. The Oliveira 9 P(3) has a large and symmetrical crown and lacks a distal accessory ridge and accessory lingual cusps, overlapping both Neandertal and recent human ranges of variation. It contrasts with at least recent human P(3) s in having relatively thin enamel. These join the Oliveira 1 to 4 remains in further documenting early MIS 3 Neandertal morphology in western Iberia.
Assuntos
Osso e Ossos/anatomia & histologia , Fósseis , Homem de Neandertal/anatomia & histologia , Dente/anatomia & histologia , Animais , Antropologia Física , Humanos , Portugal , Estatísticas não ParamétricasRESUMO
The appearance of anatomically modern humans in Europe and the nature of the transition from the Middle to Upper Palaeolithic are matters of intense debate. Most researchers accept that before the arrival of anatomically modern humans, Neanderthals had adopted several 'transitional' technocomplexes. Two of these, the Uluzzian of southern Europe and the Châtelperronian of western Europe, are key to current interpretations regarding the timing of arrival of anatomically modern humans in the region and their potential interaction with Neanderthal populations. They are also central to current debates regarding the cognitive abilities of Neanderthals and the reasons behind their extinction. However, the actual fossil evidence associated with these assemblages is scant and fragmentary, and recent work has questioned the attribution of the Châtelperronian to Neanderthals on the basis of taphonomic mixing and lithic analysis. Here we reanalyse the deciduous molars from the Grotta del Cavallo (southern Italy), associated with the Uluzzian and originally classified as Neanderthal. Using two independent morphometric methods based on microtomographic data, we show that the Cavallo specimens can be attributed to anatomically modern humans. The secure context of the teeth provides crucial evidence that the makers of the Uluzzian technocomplex were therefore not Neanderthals. In addition, new chronometric data for the Uluzzian layers of Grotta del Cavallo obtained from associated shell beads and included within a Bayesian age model show that the teeth must date to ~45,000-43,000 calendar years before present. The Cavallo human remains are therefore the oldest known European anatomically modern humans, confirming a rapid dispersal of modern humans across the continent before the Aurignacian and the disappearance of Neanderthals.
Assuntos
Emigração e Imigração/história , Homem de Neandertal/fisiologia , Animais , Esmalte Dentário/anatomia & histologia , Fósseis , História Antiga , Humanos , Itália , Dente Molar/anatomia & histologiaRESUMO
Traditional morphometric approaches for taxonomic assignment of Neanderthal and modern human dental remains are mainly characterized by caliper measurements of tooth crowns. Several studies have recently described differences in dental tissue proportions and enamel thickness between Neanderthal and modern human teeth. At least for the lower second deciduous molar (dm(2)), a three-dimensional lateral relative enamel thickness index has been proposed for separating the two taxa. This index has the advantage over other measurements of being applicable to worn teeth because it ignores the occlusal aspect of the crown. Nevertheless, a comparative evaluation of traditional crown dimensions and lateral dental tissue proportion measurements for taxonomic assignment of Neanderthal and modern human dm(2)s has not yet been performed. In this study, we compare various parameters gathered from the lateral aspects of the crown. These parameters include crown diameters, height of the lateral wall of the crown (lateral crown height = LCH), lateral enamel thickness, and dentine volume of the lateral wall, including the volume of the coronal pulp chamber (lateral dentine plus pulp volume = LDPV), in a 3D digital sample of Neanderthal and modern human dm(2)s to evaluate their utility in separating the two taxa. The LDPV and the LCH allow us to discriminate between Neanderthals and modern humans with 88.5% and 92.3% accuracy, respectively. Though our results confirm that Neanderthal dm(2)s have lower relative enamel thickness (RET) index compared with modern humans (p = 0.005), only 70% of the specimens were correctly classified on the basis of the RET index. We also emphasize that results of the lateral enamel thickness method depend on the magnitude of the interproximal wear. Accordingly, we suggest using the LCH or the LDPV to discriminate between Neanderthal and modern human dm(2)s. These parameters are more independent of interproximal wear and loss of lateral enamel.