Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(18): 19770-19785, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737083

RESUMO

Over the decades, the rise in nitrate levels in the ecosystem has posed a serious threat to the continuous existence of humans, fauna, and flora. The deleterious effects of increasing levels of nitrates in the ecosystem have led to adverse health and environmental implications in the form of methemoglobinemia and eutrophication, respectively. Different pathways/routes for the syntheses of perovskites and their oxides were presented in this review. In recent times, electrocatalytic reduction has emerged as the most utilized technique for the conversion of nitrates into ammonia, an industrial feedstock. According to published papers, the efficiency of various perovskites and their oxides used for the electrocatalytic reduction of nitrate achieved a high Faradaic efficiency of 98%. Furthermore, studies published have shown that there is a need to improve the chemical stability of perovskites and their oxides during scale-up applications, as well as their scalability for industrial applications.

2.
J Fluoresc ; 34(2): 501-514, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37432581

RESUMO

Eliminating hazardous organic contaminants from water is a major concern today. Nanomaterials with their textural features, large surface area, electrical conductivity, and magnetic properties make them efficient for the removal and photocatalytic degradation of organic pollutants. The reaction mechanisms of the photocatalytic oxidation of common organic pollutants were critically examined. A detailed review of articles published on photocatalytic degradation of hydrocarbons, pesticides, and dyes was presented therein. This review seeks to bridge information gaps on the reported nanomaterial as photocatalysts for the degradation of organic pollutants under sub-headings, nanomaterials, organic pollutants, degradation of organic pollutants, and mechanisms of photocatalytic activities.

3.
RSC Adv ; 13(33): 22675-22697, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502828

RESUMO

Steroidal estrogens (SEs) remain one of the notable endocrine disrupting chemicals (EDCs) that pose a significant threat to the aquatic environment in this era owing to their interference with the normal metabolic functions of the human body systems. They are currently identified as emerging contaminants of water sources. The sources of SEs are either natural or synthetic active ingredients in oral contraceptive and hormonal replacement therapy drugs and enter the environment primarily from excretes in the form of active free conjugate radicals, resulting in numerous effects on organisms in aquatic habitats and humans. The removal of SEs from water sources is of great importance because of their potential adverse effects on aquatic ecosystems and human health. Adsorption techniques have gained considerable attention as effective methods for the removal of these contaminants. A systemic review and bibliometric analysis of the application of adsorption for sequestration were carried out. Metadata for publications on SE removal utilizing adsorbents were obtained from the Web of Science (WoS) from January 1, 1990, to November 5, 2022 (107 documents) and Scopus databases from January 1, 1949, to November 5, 2022 (77 documents). In total, 137 documents (134 research and 4 review articles) were used to systematically map bibliometric indicators, such as the number of articles, most prolific countries, most productive scholars, and most cited articles, confirming this to be a growing research area. The use of different adsorbents, include activated carbon graphene-based materials, single and multi-walled carbon nanotubes, biochar, zeolite, and nanocomposites. The adsorption mechanism and factors affecting the removal efficiency, such as pH, temperature, initial concentration, contact time and adsorbent properties, were investigated in this review. This review discusses the advantages and limitations of different adsorbents, including their adsorption capacities, regenerative potential, and cost-effectiveness. Recent advances and innovations in adsorption technology, such as functionalized materials and hybrid systems, have also been highlighted. Overall, the bibliographic analysis provides a comprehensive overview of the adsorption technique for the removal of SEs from other sources, serving as a valuable resource for researchers and policymakers involved in the development of efficient and sustainable strategies to mitigate the effects of these emerging contaminants.

4.
Environ Sci Pollut Res Int ; 30(21): 59106-59127, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37022547

RESUMO

Humic substances comprise up to 70% of the total organic matter in soils, between 50 and 80% of the dissolved organic matter in water, and about 25% of dissolved organic matter in groundwater. Elucidation of the complex structure and properties of humic substances requires advanced analytical tools; however, they are of fundamental importance in medicine, agriculture, technology, and the environment, at large. Although they are naturally occurring, significant efforts are now being directed into their extraction owing to their relevance in improving soil properties and other environmental applications. In the present review, the different fractions of humic substances were elucidated, underlying the mechanisms by which they function in soils. Furthermore, the extraction processes of humic substances from various feedstock were illustrated, with the alkali extraction technique being the most widely used. In addition, the functional group and elemental composition of humic substances were discussed. The similarities and/or variations in the properties of humic substances as influenced by the source and origin of feedstock were highlighted. Finally, the environmental impacts of humic substances were discussed while highlighting prospects of humic acid production. This review offers enormous potential in identifying these knowledge gaps while recommending the need for inter- and multidisciplinary studies in making extensive efforts toward the sustainable production of humic substances.


Assuntos
Matéria Orgânica Dissolvida , Substâncias Húmicas , Substâncias Húmicas/análise , Meio Ambiente , Solo/química , Agricultura
5.
ACS Omega ; 8(8): 7956-7967, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36872960

RESUMO

The persistent increase in the amount of nonsteroidal anti-inflammatory drugs such as ibuprofen (IBP) and diclofenac (DCF) in water bodies is alarming, thereby calling for a need to be addressed. To address this challenge, a bimetallic (copper and zinc) plantain-based adsorbent (CZPP) and reduced graphene oxide modified form (CZPPrgo) was prepared by facile synthesis for the removal of ibuprofen (IBP) and diclofenac (DCF) in water. Both the CZPP and CZPPrgo were characterized by different techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and pHpzc analysis. FTIR and XRD confirmed the successful synthesis of the CZPP and CZPPrgo. The adsorption of the contaminants was carried out in a batch system, and several operational variables were optimized. The adsorption is affected by the initial concentration of the pollutants (5-30 mg·L-1), the adsorbent dose (0.05-0.20 g), and pH (2.0-12.0). The CZPPrgo has the best performance with maximum adsorption capacities of 148 and 146 mg·g-1 for removing IBP and DCF from water, respectively. The experimental data were fitted into different kinetic and isotherm models; the removal of IBP and DCF follows the pseudo-second order, which can be best explained by the Freundlich isotherm model. The reuse efficiency was above 80% even after four adsorption cycles. This shows that the CZPPrgo is a promising adsorbent for removing IBP and DCF in water.

6.
Environ Sci Pollut Res Int ; 27(9): 9957-9969, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31927738

RESUMO

The Sustainable Development Goal 6 (SDG #6) of the United Nations (UN) is hinged on the provision, availability, and sustainability of water for the global populace by 2030. In a bid to achieve this goal, the quest to seek for ubiquitous and low-cost adsorbents to treat effluents laden with industrial dyes, such as methylene blue (MB), is on the increase in recent years. Acute exposure of humans to (MB) dye causes cyanosis, necrosis, and jaundice and even leads to death. In this research, zinc-modified hybrid clay composite adsorbent (materials from kaolinite and biomass (crushed Carica papaya seeds and/or plantain peel)) was developed via microwave route. This adsorbent was characterized using field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray (EDX), and high-resolution transmission electron microscopy (HR-TEM). These characterization techniques confirmed the success achieved in doping hybrid clay with Zn. These adsorbents were used to sequester cationic dye (MB) from aqueous solutions and textile effluent under various experimental conditions. The adsorption and desorption data obtained were analyzed using various kinetic models, which are two-step kinetics, pseudo-first order, pseudo-second order, fractal kinetics, first-order desorption, second-order desorption, and modified statistical rate theory (MSRT) desorption models. Results showed that the adsorption of the dye occurred via several chemical interactions, while the latter models (for desorption) indicated that desorption occurred in two different desorption sites on the adsorbent surfaces, which showed that the adsorption of MB dye onto the adsorbents was stable without the emergence of any secondary pollution. Adsorption of MB was achieved within 15 min for aqueous solutions and 900 min for textile effluent, which is an improvement on previous results from other studies. The three adsorption-desorption cycles for MB uptake by the adsorbents showed that it is pragmatically applicable to treat textile effluents. Hence, low-cost composite adsorbents have a potential for the effective remediation of MB dye from textile effluents as this study confirmed.


Assuntos
Argila , Poluentes Químicos da Água , Adsorção , Corantes , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno , Micro-Ondas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA