Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Mol Biosci ; 8: 660456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124150

RESUMO

The early-life metabolome of the intestinal tract is dynamically influenced by colonization of gut microbiota which in turn is affected by nutrition, i.e. breast milk or formula. A detailed examination of fecal metabolites was performed to investigate the effect of probiotics in formula compared to control formula and breast milk within the first months of life in healthy neonates. A broad metabolomics approach was conceptualized to describe fecal polar and semi-polar metabolites affected by feeding type within the first year of life. Fecal metabolomes were clearly distinct between formula- and breastfed infants, mainly originating from diet and microbial metabolism. Unsaturated fatty acids and human milk oligosaccharides were increased in breastfed, whereas Maillard products were found in feces of formula-fed children. Altered microbial metabolism was represented by bile acids and aromatic amino acid metabolites. Elevated levels of sulfated bile acids were detected in stool samples of breastfed infants, whereas secondary bile acids were increased in formula-fed infants. Microbial co-metabolism was supported by significant correlation between chenodeoxycholic or lithocholic acid and members of Clostridia. Fecal metabolites showed strong inter- and intra-individual behavior with features uniquely present in certain infants and at specific time points. Nevertheless, metabolite profiles converged at the end of the first year, coinciding with solid food introduction.

2.
J Agric Food Chem ; 67(28): 8061-8069, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31264412

RESUMO

Food processing of infant formula alters chemical structures, including the formation of Maillard reaction products between proteins and sugars. We detected early Maillard reaction products, so-called Amadori products, in stool samples of formula-fed infants. In total, four Amadori products (N-deoxylactulosyllysine, N-deoxyfructosyllysine, N-deoxylactulosylleucylisoleucine, N-deoxyfructosylleucylisoleucine) were identified by a combination of complementary nontargeted and targeted metabolomics approaches. Chemical structures were confirmed by preparation and isolation of reference compounds, LC-MS/MS, and NMR. The leucylisoleucine Amadori compounds, which most likely originate from ß-lactoglobulin, were excreted throughout the first year of life in feces of formula-fed infants but were absent in feces of breastfed infants. Despite high inter- and intraindividual differences of Amadori products in the infants' stool, solid food introduction resulted in a continuous decrease, proving infant formula as the major source of the excreted Amadori products.


Assuntos
Alimentação com Mamadeira/estatística & dados numéricos , Fezes/química , Produtos Finais de Glicação Avançada/química , Fórmulas Infantis/análise , Cromatografia Líquida , Feminino , Manipulação de Alimentos , Humanos , Lactente , Fórmulas Infantis/efeitos adversos , Espectroscopia de Ressonância Magnética , Reação de Maillard , Masculino , Espectrometria de Massas em Tandem
3.
Am J Clin Nutr ; 106(5): 1274-1286, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28877893

RESUMO

Background: Early-life colonization of the intestinal tract is a dynamic process influenced by numerous factors. The impact of probiotic-supplemented infant formula on the composition and function of the infant gut microbiota is not well defined.Objective: We sought to determine the effects of a bifidobacteria-containing formula on the healthy human intestinal microbiome during the first year of life.Design: A double-blind, randomized, placebo-controlled study of newborn infants assigned to a standard whey-based formula containing a total of 107 colony-forming units (CFU)/g of Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium longum, B. longum subspecies infantis (intervention), or to a control formula without bifidobacteria (placebo). Breastfed controls were included. Diversity and composition of fecal microbiota were determined by 16S ribosomal RNA gene amplicon sequencing, and metabolite profiles were analyzed by ultrahigh-performance liquid chromatography-mass spectrometry over a period of 2 y.Results: Infants (n = 106) were randomly assigned to either the interventional (n = 48) or placebo (n = 49) group; 9 infants were exclusively breastfed throughout the entire intervention period of 12 mo. Infants exposed to bifidobacteria-supplemented formula showed decreased occurrence of Bacteroides and Blautia spp. associated with changes in lipids and unknown metabolites at month 1. Microbiota and metabolite profiles of intervention and placebo groups converged during the study period, and long-term colonization (24 mo) of the supplemented Bifidobacterium strains was not detected. Significant differences in microbiota and metabolites were detected between infants fed breast milk and those fed formula (P < 0.005) and between infants birthed vaginally and those birthed by cesarean delivery (P < 0.005). No significant differences were observed between infant feeding groups regarding growth, antibiotic uptake, or other health variables (P > 0.05).Conclusion: The supplementation of bifidobacteria to infant diet can modulate the occurrence of specific bacteria and metabolites during early life with no detectable long-term effects. This trial was registered at germanctr.de as DRKS00003660.


Assuntos
Bifidobacterium , Fezes/microbiologia , Microbioma Gastrointestinal , Metaboloma , Probióticos/administração & dosagem , Aleitamento Materno , Método Duplo-Cego , Ácidos Graxos Voláteis/análise , Fezes/química , Feminino , Humanos , Lactente , Fórmulas Infantis/química , Fórmulas Infantis/microbiologia , Recém-Nascido , Intestinos/microbiologia , Masculino , Leite Humano/química , Oligossacarídeos/análise , RNA Ribossômico 18S/isolamento & purificação , Análise de Sequência de DNA
4.
PLoS One ; 9(5): e98237, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24849654

RESUMO

BACKGROUND: Chronic inflammatory disorders have been increasing in incidence over the past decades following geographical patterns of industrialization. Fetal exposure to maternal inflammation may alter organ functions and the offspring's disease risk. We studied the development of genetically-driven ileitis and colitis in response to maternal inflammation using mouse models. METHODS: Disease susceptible (TnfΔARE/+ and IL10-/-) and disease-free (Tnf+/+ and IL10-/+) offspring were raised in inflamed and non-inflamed dams. Ileal, caecal and colonic pathology was evaluated in the offspring at 8 or 12 weeks of age. Ly6G-positive cells in inflamed sections from the distal ileum and distal colon were analysed by immunofluorescence microscopy. Gene expression of pro-inflammatory cytokines was measured in whole tissue specimens by quantitative PCR. Microarray analyses were performed on laser microdissected intestinal epithelium. Caecal bacterial communities were assessed by Illumina sequencing of 16S rRNA amplicons. RESULTS: Disease severity, the number of infiltrated neutrophils as well as Tnf and Il12p40 mRNA expression were independent of maternal inflammation in the offspring of mouse models for ileitis (TnfΔARE/+) and colitis (IL10-/-). Although TNF-driven maternal inflammation regulated 2,174 (wild type) and 3,345 (TnfΔARE/+) genes in the fetal epithelium, prenatal gene expression patterns were completely overwritten after birth. In addition, co-housing experiments revealed no change in phylogenetic diversity of the offspring's caecal microbiota in response to maternal inflammation. This is independent of the offspring's genotype before and after the onset of tissue pathology. CONCLUSIONS: Disease risk and activity in mouse models of chronic ileitis and colitis was independent of the fetal exposure to maternal inflammation. Likewise, maternal inflammation did not alter the diversity and composition of offspring's caecal microbiota, clearly demonstrating that changes of the gene expression program in the fetal gut epithelium were not relevant for the development of chronic inflammatory disorders in the gut.


Assuntos
Colite/genética , Colite/patologia , Ileíte/genética , Ileíte/patologia , Inflamação/patologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Primers do DNA , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interleucina-10/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Neutrófilos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Gravidez , RNA Ribossômico 16S/metabolismo , Fator de Necrose Tumoral alfa/genética
5.
PLoS One ; 8(12): e81800, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339968

RESUMO

DNA- and RNA-based PCR and reverse-transcription real-time PCR assays were developed for diagnostic detection of the vcpA zinc-metalloprotease implicated in the virulence of the coral pathogen Vibrio coralliilyticus. Both PCR methods were highly specific for V. coralliilyticus and failed to amplify strains of closely-related Vibrio species. The assays correctly detected all globally occurring V. coralliilyticus isolates including a newly-described isolate [TAV24] infecting gorgonians in the Mediterranean Sea and highlighted those isolates that had been potentially misidentified, in particular V. tubiashii strains ATCC 19105 and RE22, historically described as important oyster pathogens. The real-time assay is sensitive, detecting 10 gene copies and the relationships between gene copy number and cycle threshold (C T ) were highly linear (R(2)≥ 99.7). The real-time assay was also not affected by interference from non-target DNA. These assays are useful for rapid detection of V. coralliilyticus and monitoring of virulence levels in environmental samples, allowing for implementation of timely management steps to limit and possibly prevent losses due to V. coralliilyticus infection, as well as furthering investigations of factors affecting pathogenesis of this important marine pathogen.


Assuntos
Antozoários/microbiologia , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Metaloproteases/genética , Reação em Cadeia da Polimerase/métodos , Vibrio/genética , Animais , Sequência de Bases , Dados de Sequência Molecular , Vibrio/patogenicidade
6.
J Hepatol ; 59(3): 563-70, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23665282

RESUMO

BACKGROUND & AIMS: Obesity and hepatic steatosis are frequently associated with the development of a non-alcoholic steatohepatitis (NASH). The mechanisms driving progression of a non-inflamed steatosis to NASH are largely unknown. Here, we investigated whether ingestion of peroxidized lipids, as being present in Western style diet, triggers the development of hepatic inflammation. METHODS: Corn oil containing peroxidized fatty acids was administered to rats by gavage for 6 days. In a separate approach, hepatocytes (HC), endothelial (EC) and Kupffer cells (KC) were isolated from untreated livers, cultured, and incubated with peroxidized linoleic acid (LOOH; linoleic acid (LH) being the main fatty acid in corn oil). Samples obtained from in vivo and in vitro studies were mainly investigated by qRT-PCR and biochemical determinations of lipid peroxidation products. RESULTS: Rat treatment with peroxidized corn oil resulted in increased hepatic lipid peroxidation, upregulation of nitric oxide synthetase-2 (NOS-2), cyclooxygenase-2 (COX-2), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNFα), elevation of total nitric oxides, and increase in cd68-, cd163-, TNFα-, and/or COX-2 positive immune cells in the liver. When investigating liver cell types, LOOH elevated the secretion of TNFα, p38MAPK phosphorylation, and mRNA levels of NOS-2, COX-2, and TNFα, mainly in KC. The elevation of gene expression could be abrogated by inhibiting p38MAPK, which indicates that p38MAPK activation is involved in the pro-inflammatory effects of LOOH. CONCLUSIONS: These data show for the first time that ingestion of peroxidized fatty acids carries a considerable pro-inflammatory stimulus into the body which reaches the liver and may trigger the development of hepatic inflammation.


Assuntos
Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Ácidos Graxos/efeitos adversos , Ácidos Graxos/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Peróxidos Lipídicos/efeitos adversos , Peróxidos Lipídicos/metabolismo , Modelos Biológicos , Animais , Óleo de Milho/efeitos adversos , Óleo de Milho/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/genética , Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Masculino , Hepatopatia Gordurosa não Alcoólica , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA