Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurocrit Care ; 37(Suppl 1): 139-154, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35729464

RESUMO

BACKGROUND: Spreading depolarizations (SDs) are self-propagating waves of neuronal and glial depolarizations often seen in neurological conditions in both humans and animal models. Because SD is thought to worsen neurological injury, the role of SD in a variety of cerebral insults has garnered significant investigation. Anoxic SD is a type of SD that occurs because of anoxia or asphyxia. Although asphyxia leading to a severe drop in blood pressure may affect cerebral hemodynamics and is widely known to cause anoxic SD, the effect of anoxic SD on peripheral blood pressure in the extremities has not been investigated. This relationship is especially important to understand for conditions such as circulatory shock and cardiac arrest that directly affect both peripheral and cerebral perfusion in addition to producing anoxic SD in the brain. METHODS: In this study, we used a rat model of asphyxial cardiac arrest to investigate the role of anoxic SD on cerebral hemodynamics and metabolism, peripheral blood pressure, and the relationship between these variables in 8- to 12-week-old male rats. We incorporated a multimodal monitoring platform measuring cortical direct current simultaneously with optical imaging. RESULTS: We found that during anoxic SD, there is decoupling of peripheral blood pressure from cerebral blood flow and metabolism. We also observed that anoxic SD may modify cerebrovascular resistance. Furthermore, shorter time difference between anoxic SDs measured at different locations in the same rat was associated with better neurological outcome on the basis of the recovery of electrocorticography activity (bursting) immediately post resuscitation and the neurological deficit scale score 24 h post resuscitation. CONCLUSIONS: To our knowledge, this is the first study to quantify the relationship between peripheral blood pressure, cerebral hemodynamics and metabolism, and neurological outcome in anoxic SD. These results indicate that the characteristics of SD may not be limited to cerebral hemodynamics and metabolism but rather may also encompass changes in peripheral blood flow, possibly through a brain-heart connection, providing new insights into the role of anoxic SD in global ischemia and recovery.


Assuntos
Córtex Cerebral , Parada Cardíaca , Animais , Asfixia/complicações , Pressão Sanguínea , Circulação Cerebrovascular/fisiologia , Parada Cardíaca/complicações , Hipóxia , Masculino , Ratos
2.
J Neurosci ; 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35623885

RESUMO

Zn2+ is an important contributor to ischemic brain injury and recent studies support the hypothesis that mitochondria are key sites of its injurious effects. In murine hippocampal slices (both sexes) subjected to oxygen glucose deprivation (OGD), we found that Zn2+ accumulation and its entry into mitochondria precedes and contributes to the induction of acute neuronal death. In addition, if the ischemic episode is short (and sublethal), there is ongoing Zn2+ accumulation in CA1 mitochondria after OGD that may contribute to their delayed dysfunction. Using this slice model of sublethal OGD, we have now examined Zn2+ contributions to the progression of changes evoked by OGD and occurring over 4-5 hours. We detected progressive mitochondrial depolarization occurring from ∼ 2 hours after ischemia, a large increase in spontaneous synaptic activity between 2-3 hours, and mitochondrial swelling and fragmentation at 4 hours. Blockade of the primary route for Zn2+ entry, the mitochondrial Ca2+ uniporter (MCU; with ruthenium red, RR) or Zn2+ chelation shortly after OGD withdrawal substantially attenuated the mitochondrial depolarization and the changes in synaptic activity. RR also largely reversed the mitochondrial swelling. Finally, using an in vivo rat (male) asphyxial cardiac arrest (CA) model of transient global ischemia, we found that ∼8 min asphyxia induces considerable injury of CA1 neurons 4 hours later that is associated with strong Zn2+ accumulation within many damaged mitochondria. These effects were substantially attenuated by infusion of RR upon reperfusion. Our findings highlight mitochondrial Zn2+ accumulation after ischemia as a possible target for neuroprotective therapy.SIGNIFICANCE STATEMENT:Brain ischemia is a leading cause of mortality and long-term disability that still lacks effective treatment. After transient ischemia delayed death of neurons occurs in vulnerable brain regions. There is a critical need to understand mechanisms of this delayed neurodegeneration which can be targeted for neuroprotection. We found progressive and long-lasting mitochondrial Zn2+ accumulation to occur in highly vulnerable CA1 neurons after ischemia. Here we demonstrate that this Zn2+ accumulation contributes strongly to deleterious events occurring after ischemia including mitochondrial dysfunction, swelling and structural changes. We suggest that this mitochondrial Zn2+ entry may constitute a promising target for development of therapeutic interventions to be delivered after termination of an episode of transient global ischemia.

3.
Neurophotonics ; 8(2): 025001, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33842666

RESUMO

Significance: Quantitative measures of blood flow and metabolism are essential for improved assessment of brain health and response to ischemic injury. Aim: We demonstrate a multimodal technique for measuring the cerebral metabolic rate of oxygen ( CMRO 2 ) in the rodent brain on an absolute scale ( µ M O 2 / min ). Approach: We use laser speckle imaging at 809 nm and spatial frequency domain imaging at 655, 730, and 850 nm to obtain spatiotemporal maps of cerebral blood flow, tissue absorption ( µ a ), and tissue scattering ( µ s ' ). Knowledge of these three values enables calculation of a characteristic blood flow speed, which in turn is input to a mathematical model with a "zero-flow" boundary condition to calculate absolute CMRO 2 . We apply this method to a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation. With this model, the zero-flow condition occurs during entry into CA. Results: The CMRO 2 values calculated with our method are in good agreement with those measured with magnetic resonance and positron emission tomography by other groups. Conclusions: Our technique provides a quantitative metric of absolute cerebral metabolism that can potentially be used for comparison between animals and longitudinal monitoring of a single animal over multiple days. Though this report focuses on metabolism in a model of ischemia and reperfusion, this technique can potentially be applied to far broader types of acute brain injury and whole-body pathological occurrences.

4.
J Am Heart Assoc ; 9(1): e012691, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31902319

RESUMO

Background Impaired neurological function affects 85% to 90% of cardiac arrest (CA) survivors. Pulsatile blood flow may play an important role in neurological recovery after CA. Cerebral blood flow (CBF) pulsatility immediately, during, and after CA and resuscitation has not been investigated. We characterized the effects of asphyxial CA on short-term (<2 hours after CA) CBF and femoral arterial blood pressure (ABP) pulsatility and studied their relationship to cerebrovascular resistance (CVR) and short-term neuroelectrical recovery. Methods and Results Male rats underwent asphyxial CA followed by cardiopulmonary resuscitation. A multimodal platform combining laser speckle imaging, ABP, and electroencephalography to monitor CBF, peripheral blood pressure, and brain electrophysiology, respectively, was used. CBF and ABP pulsatility and CVR were assessed during baseline, CA, and multiple time points after resuscitation. Neuroelectrical recovery, a surrogate for neurological outcome, was assessed using quantitative electroencephalography 90 minutes after resuscitation. We found that CBF pulsatility differs significantly from baseline at all experimental time points with sustained deficits during the 2 hours of postresuscitation monitoring, whereas ABP pulsatility was relatively unaffected. Alterations in CBF pulsatility were inversely correlated with changes in CVR, but ABP pulsatility had no association to CVR. Interestingly, despite small changes in ABP pulsatility, higher ABP pulsatility was associated with worse neuroelectrical recovery, whereas CBF pulsatility had no association. Conclusions Our results reveal, for the first time, that CBF pulsatility and CVR are significantly altered in the short-term postresuscitation period after CA. Nevertheless, higher ABP pulsatility appears to be inversely associated with neuroelectrical recovery, possibly caused by impaired cerebral autoregulation and/or more severe global cerebral ischemia.


Assuntos
Pressão Arterial , Ondas Encefálicas , Circulação Cerebrovascular , Artéria Femoral/fisiopatologia , Parada Cardíaca/terapia , Fluxo Pulsátil , Ressuscitação , Animais , Modelos Animais de Doenças , Parada Cardíaca/fisiopatologia , Homeostase , Masculino , Ratos Wistar , Recuperação de Função Fisiológica , Fatores de Tempo , Resistência Vascular
5.
Front Neurosci ; 14: 609670, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510613

RESUMO

While interest toward caloric restriction (CR) in various models of brain injury has increased in recent decades, studies have predominantly focused on the benefits of chronic or intermittent CR. The effects of ultra-short, including overnight, CR on acute ischemic brain injury are not well studied. Here, we show that overnight caloric restriction (75% over 14 h) prior to asphyxial cardiac arrest and resuscitation (CA) improves survival and neurological recovery as measured by, behavioral testing on neurological deficit scores, faster recovery of quantitative electroencephalography (EEG) burst suppression ratio, and complete prevention of neurodegeneration in multiple regions of the brain. We also show that overnight CR normalizes stress-induced hyperglycemia, while significantly decreasing insulin and glucagon production and increasing corticosterone and ketone body production. The benefits seen with ultra-short CR appear independent of Sirtuin 1 (SIRT-1) and brain-derived neurotrophic factor (BDNF) expression, which have been strongly linked to neuroprotective benefits seen in chronic CR. Mechanisms underlying neuroprotective effects remain to be defined, and may reveal targets for providing protection pre-CA or therapeutic interventions post-CA. These findings are also of high importance to basic sciences research as we demonstrate that minor, often-overlooked alterations to pre-experimental dietary procedures can significantly affect results, and by extension, research homogeneity and reproducibility, especially in acute ischemic brain injury models.

6.
J Neuropathol Exp Neurol ; 78(7): 655-664, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150090

RESUMO

Mitochondrial Zn2+ accumulation, particularly in CA1 neurons, occurs after ischemia and likely contributes to mitochondrial dysfunction and subsequent neurodegeneration. However, the relationship between mitochondrial Zn2+ accumulation and their disruption has not been examined at the ultrastructural level in vivo. We employed a cardiac arrest model of transient global ischemia (TGI), combined with Timm's sulfide silver labeling, which inserts electron dense metallic silver granules at sites of labile Zn2+ accumulation, and used transmission electron microscopy (TEM) to examine subcellular loci of the Zn2+ accumulation. In line with prior studies, TGI-induced damage to CA1 was far greater than to CA3 pyramidal neurons, and was substantially progressive in the hours after reperfusion (being significantly greater after 4- than 1-hour recovery). Intriguingly, TEM examination of Timm's-stained sections revealed substantial Zn2+ accumulation in many postischemic CA1 mitochondria, which was strongly correlated with their swelling and disruption. Furthermore, paralleling the evolution of neuronal injury, both the number of mitochondria containing Zn2+ and the degree of their disruption were far greater at 4- than 1-hour recovery. These data provide the first direct characterization of Zn2+ accumulation in CA1 mitochondria after in vivo TGI, and support the idea that targeting these events could yield therapeutic benefits.


Assuntos
Região CA1 Hipocampal/metabolismo , Ataque Isquêmico Transitório/metabolismo , Mitocôndrias/metabolismo , Células Piramidais/metabolismo , Zinco/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/patologia , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/patologia , Morte Celular , Ataque Isquêmico Transitório/patologia , Masculino , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Dilatação Mitocondrial , Ratos , Ratos Wistar
7.
J Neurotrauma ; 34(19): 2823-2832, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28447885

RESUMO

Cardiac arrest (CA) affects >550,000 people annually in the United States whereas 80-90% of survivors suffer from a comatose state. Arousal from coma is critical for recovery, but mechanisms of arousal are undefined. Orexin-A, a hypothalamic excitatory neuropeptide, has been linked to arousal deficits in various brain injuries. We investigated the orexinergic system's role in recovery from CA-related neurological impairments, including arousal deficits. Using an asphyxial CA and resuscitation model in rats, we examine neurological recovery post-resuscitation in conjunction with changes in orexin-A levels in cerebrospinal fluid (CSF) and orexin-expressing neurons. We also conduct pharmacological inhibition of orexin post-resuscitation. We show that recovery from neurological deficits begins between 4 and 24 h post-resuscitation, with additional recovery by 72 h post-resuscitation. Orexin-A levels in the CSF are lowest during periods of poorest arousal post-resuscitation (4 h) and recover to control levels by 24 h. Immunostaining revealed that the number of orexin-A immunoreactive neurons declined at 4 h post-resuscitation, but increased to near normal levels by 24 h. There were no significant changes in the number of neurons expressing melanin-concentrating hormone, another neuropeptide localized in similar hypothalamus regions. Last, administration of the dual orexin receptor antagonist, suvorexant, during the initial 24 h post-resuscitation, led to sustained neurological deficits. The orexin pathway is critical during early phases of neurological recovery post-CA. Blocking this early action leads to persistent neurological deficits. This is of considerable clinical interest given that suvorexant recently received U.S. Food and Drug Administration approval for insomnia treatment.


Assuntos
Coma/metabolismo , Parada Cardíaca/complicações , Orexinas/metabolismo , Animais , Coma/etiologia , Masculino , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia
8.
Brain Connect ; 7(3): 172-181, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28398813

RESUMO

Recent electrophysiological studies have suggested surges in electrical correlates of consciousness (i.e., elevated gamma power and connectivity) after cardiac arrest (CA). This study examines electrocorticogram (ECoG) activity and coherence of the dying brain during asphyxial CA. Male Wistar rats (n = 16) were induced with isoflurane anesthesia, which was washed out before asphyxial CA. Mean phase coherence and ECoG power were compared during different stages of the asphyxial period to assess potential neural correlates of consciousness. After asphyxia, the ECoG progressed through four distinct stages (asphyxial stages 1-4 [AS1-4]), including a transient period of near-electrocerebral silence lasting several seconds (AS3). Electrocerebral silence (AS4) occurred within 1 min of the start of asphyxia, and pulseless electrical activity followed the start of AS4 by 1-2 min. AS3 was linked to a significant increase in frontal coherence between the left and right motor cortices (p < 0.05), with no corresponding increase in ECoG power. AS3 was also associated with a significant posterior shift of ECoG power, favoring the visual cortices (p < 0.05). Although the ECoG during AS3 appears visually flat or silent when viewed with standard clinical settings, our study suggests that this period of transient near-electrocerebral silence contains distinctive neural activity. Specifically, the burst in frontal coherence and posterior shift of ECoG power that we find during this period immediately preceding CA may be a neural correlate of conscious processing.


Assuntos
Encéfalo/fisiopatologia , Estado de Consciência/fisiologia , Parada Cardíaca/fisiopatologia , Neurônios/fisiologia , Animais , Asfixia/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia , Masculino , Ratos , Ratos Wistar
9.
Neurophotonics ; 4(4): 045008, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29296630

RESUMO

Quantifying rapidly varying perturbations in cerebral tissue absorption and scattering can potentially help to characterize changes in brain function caused by ischemic trauma. We have developed a platform for rapid intrinsic signal brain optical imaging using macroscopically structured light. The device performs fast, multispectral, spatial frequency domain imaging (SFDI), detecting backscattered light from three-phase binary square-wave projected patterns, which have a much higher refresh rate than sinusoidal patterns used in conventional SFDI. Although not as fast as "single-snapshot" spatial frequency methods that do not require three-phase projection, square-wave patterns allow accurate image demodulation in applications such as small animal imaging where the limited field of view does not allow single-phase demodulation. By using 655, 730, and 850 nm light-emitting diodes, two spatial frequencies ([Formula: see text] and [Formula: see text]), three spatial phases (120 deg, 240 deg, and 360 deg), and an overall camera acquisition rate of 167 Hz, we map changes in tissue absorption and reduced scattering parameters ([Formula: see text] and [Formula: see text]) and oxy- and deoxyhemoglobin concentration at [Formula: see text]. We apply this method to a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) to quantify hemodynamics and scattering on temporal scales ([Formula: see text]) ranging from tens of milliseconds to minutes. We observe rapid concurrent spatiotemporal changes in tissue oxygenation and scattering during CA and following CPR, even when the cerebral electrical signal is absent. We conclude that square-wave SFDI provides an effective technical strategy for assessing cortical optical and physiological properties by balancing competing performance demands for fast signal acquisition, small fields of view, and quantitative information content.

10.
Biomed Opt Express ; 7(11): 4660-4673, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27896005

RESUMO

In the present study, we have developed a multi-modal instrument that combines laser speckle imaging, arterial blood pressure, and electroencephalography (EEG) to quantitatively assess cerebral blood flow (CBF), mean arterial pressure (MAP), and brain electrophysiology before, during, and after asphyxial cardiac arrest (CA) and resuscitation. Using the acquired data, we quantified the time and magnitude of the CBF hyperemic peak and stabilized hypoperfusion after resuscitation. Furthermore, we assessed the correlation between CBF and MAP before and after stabilized hypoperfusion. Finally, we examined when brain electrical activity resumes after resuscitation from CA with relation to CBF and MAP, and developed an empirical predictive model to predict when brain electrical activity resumes after resuscitation from CA. Our results show that: 1) more severe CA results in longer time to stabilized cerebral hypoperfusion; 2) CBF and MAP are coupled before stabilized hypoperfusion and uncoupled after stabilized hypoperfusion; 3) EEG activity (bursting) resumes after the CBF hyperemic phase and before stabilized hypoperfusion; 4) CBF predicts when EEG activity resumes for 5-min asphyxial CA, but is a poor predictor for 7-min asphyxial CA. Together, these novel findings highlight the importance of using multi-modal approaches to investigate CA recovery to better understand physiological processes and ultimately improve neurological outcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA