Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Model ; 23(4): 128, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28321656

RESUMO

Molecular modeling of ferroelectric composites containing polyvinylidene fluoride (PVDF) and either graphene (G) or graphene oxide (GO) were performed using the semi-empirical quantum approximation PM3 in HyperChem. The piezo properties of the composites were analyzed and compared with experimental data obtained for P(VDF-TrFE)-GO films. Qualitative agreement was obtained between the results of the modeling and the experimental results in terms of the properties of the measured effective piezoelectric coefficient d 33eff and its decrease in the presence of G/GO in comparison with the average computed piezoelectric coefficient . When models incorporating one or several G layers with 54 carbon atoms were investigated, the average piezoelectric coefficient was found to decrease to -9.8 pm/V for the one-sided model PVDF/G and to -18.98 pm/V for the sandwich model G/PVDF/G as compared with the calculated piezoelectric coefficient for pure PVDF ( = -42.2 pm/V computed in present work, and = -38.5 pm/V, obtained from J Mol Model 35 (2013) 19:3591-3602). When models incorporating one or several GO layers with 98 carbon atoms were considered, the piezoelectric coefficient was found to decrease to -14.6 pm/V for the one-sided PVDF/GO model and to -29.8 pm/V for the sandwich GO/PVDF/GO model as compared with the same calculated piezoelectric coefficient for pure PVDF.

2.
Phys Chem Chem Phys ; 16(10): 4977-81, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24477353

RESUMO

Perovskite-type manganites, such as Pr1-xCaxMnO3, La1-xCaxMnO3 and La1-xSrxMnO3 solid solutions, are set forth as a case study of ferroelectricity formation mechanisms associated with the appearance of site- and bond-centered orbital ordering which breaks structural inversion symmetry. Even though the observation of macroscopic ferroelectricity may be hindered by the finite conductivity of manganites, polarization can still exist in nanoscale volumes. We use Piezoresponse Force Microscopy to probe local bias induced modifications of electrical and electromechanical properties at the manganite surface. Clear bias-induced piezocontrast and local hysteresis loops are observed for La0.89Sr0.11MnO3 and Pr0.60Ca0.40MnO3 compounds providing convincing evidence of the existence of locally induced polar states well above the transition temperature of the CO phase, while the reference samples without CO behavior show no ferroelectric-like response. Such coexistence of ferroelectricity and magnetism in manganites due to the charge ordering (CO) under locally applied electric field opens up a new pathway to expand the phase diagrams of such systems and to achieve spatially localized multiferroic effects with a potential to be used in a new generation of memory cells and data processing circuits.

3.
J Mol Model ; 19(9): 3591-602, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23729009

RESUMO

In this work, computational molecular modeling and exploration was applied to study the nature of the negative piezoelectric effect in the ferroelectric polymer polyvinylidene fluoride (PVDF), and the results confirmed by actual nanoscale measurements. First principle calculations were employed, using various quantum-chemical methods (QM), including semi-empirical (PM3) and various density functional theory (DFT) approaches, and in addition combined with molecular mechanics (MM) methods in complex joint approaches (QM/MM). Both PVDF molecular chains and a unit cell of crystalline ß-phase PVDF were modeled. This computational molecular exploration clearly shows that the nature of the so-called negative piezo-electric effect in the ferroelectric PVDF polymer has a self-consistent quantum nature, and is related to the redistribution of the electron molecular orbitals (wave functions), leading to the shifting of atomic nuclei and reorganization of all total charges to the new, energetically optimal positions, under an applied electrical field. Molecular modeling and first principles calculations show that the piezoelectric coefficient d 33 has a negative sign, and its average values lies in the range of d 33 ~ -16.6 to -19.2 pC/N (or pm/V) (for dielectric permittivity ε = 5) and in the range of d 33 ~ -33.5 to -38.5 pC/N (or pm/V) (for ε = 10), corresponding to known data, and allowing us to explain the reasons for the negative sign of the piezo-response. We found that when a field is applied perpendicular to the PVDF chain length, as polarization increases the chain also stretches, increasing its length and reducing its height. For computed value of ε ~ 5 we obtained a value of d31 ~ +15.5 pC/N with a positive sign. This computational study is corroborated by measured nanoscale data obtained by atomic force and piezo-response force microscopy (AFM/PFM). This study could be useful as a basis for further insights into other organic and molecular ferroelectrics.


Assuntos
Modelos Moleculares , Polímeros/química , Polivinil/química , Modelos Químicos , Conformação Molecular
4.
Materials (Basel) ; 3(11): 4860-4870, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28883357

RESUMO

Relaxors constitute a large class of ferroelectrics where disorder is introduced by doping with ions of different size and valence, in order to maximize their useful properties in a broad temperature range. Polarization disorder in relaxors is typically studied by dielectric and scattering techniques that do not allow direct mapping of relaxor parameters, such as correlation length or width of the relaxation time spectrum. In this paper, we introduce a novel method based on measurements of local vibrations by Piezoresponse Force Microscopy (PFM) that detects nanoscale polarization on the relaxor surface. Random polarization patterns are then analyzed via local Fast Fourier Transform (FFT) and the FFT PFM parameters, such as amplitude, correlation radius and width of the spectrum of spatial correlations, are mapped along with the conventional topography. The results are tested with transparent (Pb, La) (Zr, Ti)O3 ceramics where local disorder is due to doping with La3+. The conclusions are made about the distribution of the defects responsible for relaxor behavior and the role of the grain boundaries in the macroscopic response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA