Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 38(3): 518-529, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29196321

RESUMO

Cell-surface molecules are dynamically regulated at the synapse to assemble and disassemble adhesive contacts that are important for synaptogenesis and for tuning synaptic transmission. Metalloproteinases dynamically regulate cellular behaviors through the processing of cell surface molecules. In the present study, we evaluated the role of membrane-type metalloproteinases (MT-MMPs) in excitatory synaptogenesis. We find that MT3-MMP and MT5-MMP are broadly expressed in the mouse cerebral cortex and that MT3-MMP loss-of-function interferes with excitatory synapse development in dissociated cortical neurons and in vivo We identify Nogo-66 receptor (NgR1) as an MT3-MMP substrate that is required for MT3-MMP-dependent synapse formation. Introduction of the shed ectodomain of NgR1 is sufficient to accelerate excitatory synapse formation in dissociated cortical neurons and in vivo Together, our findings support a role for MT3-MMP-dependent shedding of NgR1 in regulating excitatory synapse development.SIGNIFICANCE STATEMENT In this study, we identify MT3-MMP, a membrane-bound zinc protease, to be necessary for the development of excitatory synapses in cortical neurons. We identify Nogo-66 receptors (NgR1) as a downstream target of MT3-MMP proteolytic activity. Furthermore, processing of surface NgR1 by MT3-MMP generates a soluble ectodomain fragment that accelerates the formation of excitatory synapses. We propose that MT3-MMP activity and NgR1 shedding could stimulate circuitry remodeling in the adult brain and enhance functional connectivity after brain injury.


Assuntos
Córtex Cerebral/metabolismo , Metaloproteinase 16 da Matriz/metabolismo , Neurônios/metabolismo , Receptor Nogo 1/metabolismo , Sinapses/metabolismo , Animais , Metalotioneína 3 , Camundongos , Ratos
2.
Sci Rep ; 6: 27343, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27273464

RESUMO

Following the migration of the axonal growth cone to its target area, the initial axo-dendritic contact needs to be transformed into a functional synapse. This multi-step process relies on overlapping but distinct combinations of molecules that confer synaptic identity. Slitrk molecules are transmembrane proteins that are highly expressed in the central nervous system. We found that two members of the Slitrk family, Slitrk1 and Slitrk2, can regulate synapse formation between hippocampal neurons. Slitrk1 is enriched in postsynaptic fractions and is localized to excitatory synapses. Overexpression of Slitrk1 and Slitrk2 in hippocampal neurons increased the number of synaptic contacts on these neurons. Furthermore, decreased expression of Slitrk1 in hippocampal neurons led to a reduction in the number of excitatory, but not inhibitory, synapses formed in hippocampal neuron cultures. In addition, we demonstrate that different leucine rich repeat domains of the extracellular region of Slitrk1 are necessary to mediate interactions with Slitrk binding partners of the LAR receptor protein tyrosine phosphatase family, and to promote dimerization of Slitrk1. Altogether, our results demonstrate that Slitrk family proteins regulate synapse formation.


Assuntos
Hipocampo/fisiologia , Proteínas de Membrana/análise , Proteínas do Tecido Nervoso/análise , Sinapses/química , Sinapses/fisiologia , Animais , Células Cultivadas , Humanos , Ratos Sprague-Dawley
3.
Dev Dyn ; 238(12): 3285-96, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19924824

RESUMO

The Slitrk family of transmembrane proteins is composed of six members that are highly expressed in the nervous system. To date, the function of Slitrks during development of the nervous system has yet to be defined. The high homology between the extracellular region of Slitrks and the repulsive axon guidance molecules Slits suggests that Slitrks may regulate axon outgrowth during development. To begin to evaluate their role during development, we have examined the expression of the Slitrk genes in the developing murine nervous system using in situ hybridization. Here, we show that despite some overlap in expression, the Slitrks display distinct patterns of expression in the olfactory system, the eye, forebrain structures, the cerebellum, the spinal cord, and dorsal root ganglia. These diverse patterns of expression suggest that Slitrk family members may have different functions during development of the nervous system.


Assuntos
Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Animais , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Olho/embriologia , Olho/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/metabolismo , Camundongos , Família Multigênica/genética , Proteínas do Tecido Nervoso/metabolismo , Condutos Olfatórios/embriologia , Condutos Olfatórios/metabolismo , Gravidez , RNA Complementar/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA