Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Commun ; 15(1): 3872, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719797

RESUMO

The gut microbiota and microglia play critical roles in Alzheimer's disease (AD), and elevated Bacteroides is correlated with cerebrospinal fluid amyloid-ß (Aß) and tau levels in AD. We hypothesize that Bacteroides contributes to AD by modulating microglia. Here we show that administering Bacteroides fragilis to APP/PS1-21 mice increases Aß plaques in females, modulates cortical amyloid processing gene expression, and down regulates phagocytosis and protein degradation microglial gene expression. We further show that administering Bacteroides fragilis to aged wild-type male and female mice suppresses microglial uptake of Aß1-42 injected into the hippocampus. Depleting murine Bacteroidota with metronidazole decreases amyloid load in aged 5xFAD mice, and activates microglial pathways related to phagocytosis, cytokine signaling, and lysosomal degradation. Taken together, our study demonstrates that members of the Bacteroidota phylum contribute to AD pathogenesis by suppressing microglia phagocytic function, which leads to impaired Aß clearance and accumulation of amyloid plaques.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia , Fagocitose , Placa Amiloide , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/microbiologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Feminino , Camundongos , Masculino , Bacteroides fragilis/metabolismo , Microbioma Gastrointestinal , Humanos , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Hipocampo/patologia
2.
J Parkinsons Dis ; 14(2): 227-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427502

RESUMO

Parkinson's disease (PD) is an increasingly common neurodegenerative disease. It has been suggested that the etiology of idiopathic PD is complex and multifactorial involving environmental contributions, such as viral or bacterial infections and microbial dysbiosis, in genetically predisposed individuals. With advances in our understanding of the gut-brain axis, there is increasing evidence that the intestinal microbiota and the mammalian immune system functionally interact. Recent findings suggest that a shift in the gut microbiome to a pro-inflammatory phenotype may play a role in PD onset and progression. While there are links between gut bacteria, inflammation, and PD, the bacterial products involved and how they traverse the gut lumen and distribute systemically to trigger inflammation are ill-defined. Mechanisms emerging in other research fields point to a role for small, inherently stable vesicles released by Gram-negative bacteria, called outer membrane vesicles in disease pathogenesis. These vesicles facilitate communication between bacteria and the host and can shuttle bacterial toxins and virulence factors around the body to elicit an immune response in local and distant organs. In this perspective article, we hypothesize a role for bacterial outer membrane vesicles in PD pathogenesis. We present evidence suggesting that these outer membrane vesicles specifically from Gram-negative bacteria could potentially contribute to PD by traversing the gut lumen to trigger local, systemic, and neuroinflammation. This perspective aims to facilitate a discussion on outer membrane vesicles in PD and encourage research in the area, with the goal of developing strategies for the prevention and treatment of the disease.


Assuntos
Microbioma Gastrointestinal , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Doença de Parkinson/patologia , Membrana Externa Bacteriana/patologia , Inflamação/complicações , Microbioma Gastrointestinal/fisiologia , Mamíferos
3.
J Sleep Res ; : e14109, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014898

RESUMO

Isolated rapid eye movement (REM) sleep behaviour disorder (iRBD) is a sleep disorder that is characterised by dream enactment episodes during REM sleep. It is the strongest known predictor of α-synuclein-related neurodegenerative disease (αNDD), such that >80% of people with iRBD will eventually develop Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy in later life. More research is needed to understand the trajectory of phenoconversion to each αNDD. Only five 'gold standard' prevalence studies of iRBD in older adults have been undertaken previously, with estimates ranging from 0.74% to 2.01%. The diagnostic recommendations for video-polysomnography (vPSG) to confirm iRBD makes prevalence studies challenging, as vPSG is often unavailable to large cohorts. In Australia, there have been no iRBD prevalence studies, and little is known about the cognitive and motor profiles of Australian people with iRBD. The Island Study Linking Ageing and Neurodegenerative Disease (ISLAND) Sleep Study will investigate the prevalence of iRBD in Tasmania, an island state of Australia, using validated questionnaires and home-based vPSG. It will also explore several cognitive, motor, olfactory, autonomic, visual, tactile, and sleep profiles in people with iRBD to better understand which characteristics influence the progression of iRBD to αNDD. This paper details the ISLAND Sleep Study protocol and presents preliminary baseline results.

4.
Neurology ; 101(22): e2314-e2324, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37816639

RESUMO

BACKGROUND AND OBJECTIVES: There are limited validated biomarkers in Parkinson disease (PD) which substantially hinders the ability to monitor disease progression and consequently measure the efficacy of disease-modifying treatments. Imaging biomarkers, such as vesicular monoamine transporter type 2 (VMAT2) PET, enable enhanced diagnostic accuracy and detect early neurodegenerative changes associated with prodromal PD. This study sought to assess whether 18F-AV-133 VMAT2 PET is sensitive enough to monitor and quantify disease progression over a 2-year window. METHODS: 18F-AV-133 PET scans were performed on participants with PD and REM sleep behavior disorder (RBD) and neurologic controls (NC). All participants were scanned twice ∼26 months apart. Regional tracer retention was calculated with a primary visual cortex reference region and expressed as the standard uptake volume ratio. Regions of interest included caudate, anterior, and posterior putamen. At the time of scanning, participants underwent clinical evaluation including UPDRSMOTOR test, Sniffin' Sticks, and Hospital Anxiety and Depression Score. RESULTS: Over the 26-month interval, a significant decline in PET signal was observed in all 3 regions in participants with PD (N = 26) compared with NC (N = 12), consistent with a decrease in VMAT2 level and ongoing neurodegeneration. Imaging trajectory calculations suggest that the neurodegeneration in PD occurs over ∼33 years [CI: 27.2-39.5], with ∼10.5 years [CI: 9.1-11.3] of degeneration in the posterior putamen before it becomes detectable on a VMAT2 PET scan, a further ∼6.5 years [CI: 1.6-12.7] until symptom onset, and a further ∼3 years [CI: 0.3-8.7] until clinical diagnosis. DISCUSSION: Over a 2-year period, 18F-AV-133 VMAT2 PET was able to detect progression of nigrostriatal degeneration in participants with PD, and it represents a sensitive tool to identify individuals at risk of progression to PD, which are currently lacking using clinical readouts. Trajectory models propose that there is nigrostriatal degeneration occurring for 20 years before clinical diagnosis. These data demonstrate that VMAT2 PET provides a sensitive measure to monitor neurodegenerative progression of PD which has implications for PD diagnostics and subsequently clinical trial patient stratification and monitoring. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that VMAT2 PET can detect patients with Parkinson disease and quantify progression over a 2-year window.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Proteínas Vesiculares de Transporte de Monoamina , Biomarcadores , Progressão da Doença
5.
Biomedicines ; 10(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36551782

RESUMO

The prodromal phase of Parkinson's disease (PD) is characterised by many non-motor symptoms, and these have recently been posited to be predictive of later diagnosis. Genetic rodent models can develop non-motor phenotypes, providing tools to identify mechanisms underlying the early development of PD. However, it is not yet clear how reproducible non-motor phenotypes are amongst genetic PD rodent models, whether phenotypes are age-dependent, and the translatability of these phenotypes has yet to be explored. A systematic literature search was conducted on studies using genetic PD rodent models to investigate non-motor phenotypes; cognition, anxiety/depressive-like behaviour, gastrointestinal (GI) function, olfaction, circadian rhythm, cardiovascular and urinary function. In total, 51 genetic models of PD across 150 studies were identified. We found outcomes of most phenotypes were inconclusive due to inadequate studies, assessment at different ages, or variation in experimental and environmental factors. GI dysfunction was the most reproducible phenotype across all genetic rodent models. The mouse model harbouring mutant A53T, and the wild-type hα-syn overexpression (OE) model recapitulated the majority of phenotypes, albeit did not reliably produce concurrent motor deficits and nigral cell loss. Furthermore, animal models displayed different phenotypic profiles, reflecting the distinct genetic risk factors and heterogeneity of disease mechanisms. Currently, the inconsistent phenotypes within rodent models pose a challenge in the translatability and usefulness for further biomechanistic investigations. This review highlights opportunities to improve phenotype reproducibility with an emphasis on phenotypic assay choice and robust experimental design.

6.
Neurotherapeutics ; 19(6): 1966-1975, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36175781

RESUMO

Hyposmia is a prevalent prodromal feature of Parkinson's disease (PD), though the neuropathology that underlies this symptom is poorly understood. Unlike the substantia nigra, the status of metal homeostasis in the olfactory bulbs has not been characterized in PD. Given the increasing interest in metal modulation as a therapeutic avenue in PD, we sought to investigate bulbar metals and the effect of AT434 (formerly PBT434) an orally bioavailable, small molecule modulator of metal homeostasis on hyposmia in a mouse model of parkinsonism (the tau knockout (tau-/-) mouse). 5.5 (pre-hyposmia) and 13.5-month-old (pre-motor) mice were dosed with ATH434 (30 mg/kg/day, oral gavage) for 6 weeks. Animals then underwent behavioral analysis for olfactory and motor phenotypes. The olfactory bulbs and the substantia nigra were then collected and analyzed for metal content, synaptic markers, and dopaminergic cell number. ATH434 was able to prevent the development of hyposmia in young tau-/- mice, which coincided with a reduction in bulbar iron and copper levels, an increase in synaptophysin, and a reduction in soluble α-synuclein. ATH434 was able to prevent the development of motor impairment in aged tau-/- mice, which coincided with a reduction in iron levels and reduced neurodegeneration in the substantia nigra. These data implicate metal dyshomeostasis in parkinsonian olfactory deficits, and champion a potential clinical benefit of ATH434 in both prodromal and clinical stages of PD.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Animais , Camundongos , Anosmia , alfa-Sinucleína/genética , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/patologia , Substância Negra/metabolismo , Doença de Parkinson/genética , Modelos Animais de Doenças , Ferro
7.
Hum Mol Genet ; 31(12): 1997-2009, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34999772

RESUMO

Tubulin-associated unit (Tau) is a microtubule-associated protein, whose abnormal phosphorylation and deposition in the brain characterizes a range of neurodegenerative diseases called tauopathies. Recent clinical (post-mortem) and pre-clinical evidence suggests that Huntington's disease (HD), an autosomal dominant neurodegenerative disorder, could be considered as a tauopathy. Studies have found the presence of hyperphosphorylated tau, altered tau isoform ratio and aggregated tau in HD brains. However, little is known about the implication of tau in the development of HD pathophysiology, which includes motor, cognitive and affective symptoms. To shine a light on the involvement of tau in HD, our present study aimed at (i) knocking out tau expression and (ii) expressing a transgene encoding mutant human tau in the R6/1 mouse model of HD. We hypothesized that expression of the mutant human tau transgene in HD mice would worsen the HD phenotype, while knocking out endogenous mouse tau in HD mice would improve some behavioral deficits displayed by HD mice. Our data suggest that neither the expression of a tau transgene nor the ablation of tau expression impacted the progression of the HD motor, cognitive and affective phenotypes. Supporting these behavioral findings, we also found that modulating tau expression had no effect on brain weights in HD mice. We also report that expression of the tau transgene increased the weight of WT and HD male mice, whereas tau ablation increased the weight of HD females only. Together, our results indicate that tau might not be as important in regulating the onset and progression of HD symptomatology as previously proposed.


Assuntos
Doença de Huntington , Tauopatias , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Mutação com Ganho de Função , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Transgênicos , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
8.
Sci Rep ; 10(1): 17631, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097764

RESUMO

Motor deficits in parkinsonism are caused by degeneration of dopaminergic nigral neurons. The success of disease-modifying therapies relies on early detection of the underlying pathological process, leading to early interventions in the disease phenotype. Healthy (n = 16), REM sleep behavior disorder (RBD) (n = 14), dementia with Lewy bodies (n = 10), and Parkinson's disease (PD) (n = 20) participants underwent 18F-AV133 vesicular monoamine transporter type-2 (VMAT2) PET to determine the integrity of the nigrostriatal pathway. Clinical, neurophysiological and neuropsychological testing was conducted to assess parkinsonian symptoms. There was reduced VMAT2 levels in RBD participants in the caudate and putamen, indicating nigrostriatal degeneration. RBD patients also presented with hyposmia and anxiety, non-motor symptoms associated with parkinsonism. 18F-AV133 VMAT2 PET allows identification of underlying nigrostriatal degeneration in RBD patients. These findings align with observations of concurrent non-motor symptoms in PD and RBD participants of the Parkinson's Progression Markers Initiative. Together, these findings suggest that RBD subjects have prodromal parkinsonism supporting the concept of conducting neuroprotective therapeutic trials in RBD-enriched cohorts. Ongoing longitudinal follow-up of these subjects will allow us to determine the time-window of clinical progression.


Assuntos
Transtornos Parkinsonianos/diagnóstico por imagem , Sono REM/fisiologia , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo , Núcleo Caudado , Corpo Estriado , Progressão da Doença , Diagnóstico Precoce , Feminino , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/fisiopatologia , Estudos Longitudinais , Masculino , Testes Neuropsicológicos , Doença de Parkinson/genética , Transtornos Parkinsonianos/fisiopatologia , Tomografia por Emissão de Pósitrons/métodos , Sintomas Prodrômicos , Putamen , Transtorno do Comportamento do Sono REM/complicações , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Transtorno do Comportamento do Sono REM/fisiopatologia , Sono REM/genética , Proteínas Vesiculares de Transporte de Monoamina/fisiologia
9.
J Parkinsons Dis ; 10(4): 1343-1353, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986683

RESUMO

Since the initial reports of COVID-19 in December 2019, the world has been gripped by the disastrous acute respiratory disease caused by the SARS-CoV-2 virus. There are an ever-increasing number of reports of neurological symptoms in patients, from severe (encephalitis), to mild (hyposmia), suggesting the potential for neurotropism of SARS-CoV-2. This Perspective investigates the hypothesis that the reliance on self-reporting of hyposmia has resulted in an underestimation of neurological symptoms in COVID-19 patients. While the acute effect of the virus on the nervous system function is vastly overshadowed by the respiratory effects, we propose that it will be important to monitor convalescent individuals for potential long-term implications that may include neurodegenerative sequelae such as viral-associated parkinsonism. As it is possible to identify premorbid harbingers of Parkinson's disease, we propose long-term screening of SARS-CoV-2 cases post-recovery for these expressions of neurodegenerative disease. An accurate understanding of the incidence of neurological complications in COVID-19 requires long-term monitoring for sequelae after remission and a strategized health policy to ensure healthcare systems all over the world are prepared for a third wave of the virus in the form of parkinsonism.


Assuntos
Infecções por Coronavirus/complicações , Transtornos Parkinsonianos/psicologia , Transtornos Parkinsonianos/virologia , Pneumonia Viral/complicações , Agnosia/virologia , COVID-19 , Coinfecção/complicações , Infecções por Coronavirus/psicologia , Humanos , Pandemias , Pneumonia Viral/psicologia
10.
J Alzheimers Dis ; 77(4): 1705-1715, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925070

RESUMO

BACKGROUND: Alterations in the methionine cycle and abnormal tau phosphorylation are implicated in many neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia. rTg4510 mice express mutant human P301L tau and are a model of tau hyperphosphorylation. The cognitive deficit seen in these animals correlates with a burden of hyperphosphorylated tau and is a model to test therapies aimed at lowering phosphorylated tau. OBJECTIVE: This study aimed to increase protein phosphatase 2A activity through supplementation of S-adenosylmethionine and analyze the effect on spatial memory and tau in treated animals. METHODS: 6-month-old rTg4510 mice were treated with 100 mg/kg S-adenosylmethionine by oral gavage for 3 weeks. Spatial recognition memory was tested in the Y-maze. Alterations to phosphorylated tau and protein phosphatase 2A were explored using immunohistochemistry, western blot, and enzyme-linked immunosorbent assays. RESULTS: Treatment with S-adenosylmethionine increased the Y-maze novel arm exploration time and increased both the expression and activity of protein phosphatase 2A. Furthermore, treatment reduced the number of AT8 positive neurons and reduced the expression of phosphorylated tau (Ser202/Thr205). S-adenosylmethionine contributes to multiple pathways in neuronal homeostasis and neurodegeneration. CONCLUSION: This study shows that supplementation with S-adenosylmethionine stabilizes the heterotrimeric form of PP2A resulting in an increase the enzymatic activity, a reduced level of pathological tau, and improved cognition.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Proteína Fosfatase 2/metabolismo , S-Adenosilmetionina/administração & dosagem , Proteínas tau/antagonistas & inibidores , Proteínas tau/metabolismo , Administração Oral , Animais , Disfunção Cognitiva/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Estabilidade Proteica/efeitos dos fármacos
11.
Acta Neuropathol Commun ; 6(1): 57, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976255

RESUMO

Parkinson's disease is diagnosed upon the presentation of motor symptoms, resulting from substantial degeneration of dopaminergic neurons in the midbrain. Prior to diagnosis, there is a lengthy prodromal stage in which non-motor symptoms, including olfactory deficits (hyposmia), develop. There is limited information about non-motor impairments and there is a need for directed research into these early pathogenic cellular pathways that precede extensive dopaminergic death in the midbrain. The protein tau has been identified as a genetic risk factor in the development of sporadic PD. Tau knockout mice have been reported as an age-dependent model of PD, and this study has demonstrated that they develop motor deficits at 15-months-old. We have shown that at 7-month-old tau knockout mice present with an overt hyposmic phenotype. This olfactory deficit correlates with an accumulation of α-synuclein, as well as autophagic impairment, in the olfactory bulb. This pathological feature becomes apparent in the striatum and substantia nigra of 15-month-old tau knockout mice, suggesting the potential for a spread of disease. Initial primary cell culture experiments have demonstrated that ablation of tau results in the release of α-synuclein enriched exosomes, providing a potential mechanism for disease spread. These alterations in α-synuclein level as well as a marked autophagy impairment in the tau knockout primary cells recapitulate results seen in the animal model. These data implicate a pathological role for tau in early Parkinson's disease.


Assuntos
Transtornos do Olfato/etiologia , Transtornos do Olfato/genética , Doença de Parkinson/complicações , Proteínas tau/deficiência , Fatores Etários , Animais , Autofagia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Exossomos/metabolismo , Exossomos/patologia , Exossomos/ultraestrutura , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Odorantes , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Doença de Parkinson/patologia , Desempenho Psicomotor/fisiologia , Proteína Sequestossoma-1/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA