Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 57(21): 6219-6228, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30118004

RESUMO

Continuum removal is vital in hyperspectral image analysis. It enables data to be used for any application and usually requires approximations or assumptions to be made. One of these approximations is related to the calculation of the spectra of the background's blackbody temperature. Here, we present a new method to calculate the continuum removal process. The proposed method eliminates the calculation for ground-based hyperspectral infrared imagery by applying two acquisition sets before and after using the heating source. The approach involves a laboratory experiment on a long-wave infrared (LWIR; 7.7-11.8 µm), with a LWIR-macro lens, an Infragold plate, and a heating source. To calculate the continuum removal process, the approach applies non-negative matrix factorization (NMF) to extract Rank-1 NMF, estimate the downwelling radiance, and compare it with that of other conventional methods. NMF uses gradient-descent-based rules (GD) and non-negative least-squares (NNLS) optimization algorithms to obtain Rank-1 NMF. A comparative analysis is performed with 1%-20% additive noise for all algorithms by using the spectral angle mapper and normalized cross correlation (NCC). Results reveal the promising performance of NMF-GD (average of 72.5% similarity percentage using NCC) and NMF-NNLS (average of 77.6% similarity percentage using NCC).

2.
Environ Sci Technol ; 52(14): 8050-8057, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29894187

RESUMO

Magnesium-rich minerals that are abundant in ultramafic mining waste have the potential to be used as a safe and permanent sequestration solution for carbon dioxide (CO2). Our understanding of thermo-hydro-chemical regimes that govern this reaction at an industrial scale, however, has remained an important challenge to its widespread implementation. Through a year-long monitoring experiment performed at a 110 Mt chrysotile waste pile, we have documented the existence of two distinct thermo-hydro-chemical regimes that control the ingress of CO2 and the subsequent mineral carbonation of the waste. The experimental results are supported by a coupled free-air/porous media numerical flow and transport model that provides insights into optimization strategies to increase the efficiency of mineral sequestration at an industrial scale. Although functioning passively under less-than-optimal conditions compared to laboratory-scale experiments, the 110 Mt Thetford Mines pile is nevertheless estimated to be sequestering up to 100 tonnes of CO2 per year, with a potential total carbon capture capacity under optimal conditions of 3 Mt. Annually, more than 100 Mt of ultramafic mine waste suitable for mineral carbonation is generated by the global mining industry. Our results show that this waste material could become a safe and permanent carbon sink for diffuse sources of CO2.


Assuntos
Asbestos Serpentinas , Resíduos Industriais , Carbono , Dióxido de Carbono , Sequestro de Carbono , Mineração
3.
Environ Sci Pollut Res Int ; 24(12): 11734-11751, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28337624

RESUMO

The geochemical behavior of ultramafic waste rocks and the effect of carbon sequestration by these waste rocks on the water drainage quality were investigated using laboratory-scale kinetic column tests on samples from the Dumont Nickel Project (RNC Minerals, QC, Canada). The test results demonstrated that atmospheric CO2 dissolution induced the weathering of serpentine and brucite within the ultramafic rocks, generating high concentrations of Mg and HCO3- with pH values ranging between 9 and 10 in the leachates that promote the precipitation of secondary Mg carbonates. These alkaline pH values appear to have prevented the mobilization of many metals; Fe, Ni, Cu, and Zn were found at negligible concentrations in the leachates. Posttesting characterization using chemical analyses, diffuse reflectance infrared Fourier transform (DRIFT), and scanning electron microscope (SEM) observations confirmed the precipitation of secondary hydrated Mg carbonates as predicted by thermodynamic calculations. The formation of secondary Mg carbonates induced cementation of the waste particles, resulting in the development of a hardpan.


Assuntos
Sequestro de Carbono , Níquel , Mineração , Quebeque
4.
Environ Sci Technol ; 45(21): 9413-20, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21919443

RESUMO

Mineral carbonation of ultramafic rocks provides an environmentally safe and permanent solution for CO(2) sequestration. In order to assess the carbonation potential of ultramafic waste material produced by industrial processing, we designed a laboratory-scale method, using a modified eudiometer, to measure continuous CO(2) consumption in samples at atmospheric pressure and near ambient temperature. The eudiometer allows monitoring the CO(2) partial pressure during mineral carbonation reactions. The maximum amount of carbonation and the reaction rate of different samples were measured in a range of experimental conditions: humidity from dry to submerged, temperatures of 21 and 33 °C, and the proportion of CO(2) in the air from 4.4 to 33.6 mol %. The most reactive samples contained ca. 8 wt % CO(2) after carbonation. The modal proportion of brucite in the mining residue is the main parameter determining maximum storage capacity of CO(2). The reaction rate depends primarily on the proportion of CO(2) in the gas mixture and secondarily on parameters controlling the diffusion of CO(2) in the sample, such as relative saturation of water in pore space. Nesquehonite was the dominant carbonate for reactions at 21 °C, whereas dypingite was most common at 33 °C.


Assuntos
Sequestro de Carbono , Mineração , Dióxido de Carbono/química , Cinética , Hidróxido de Magnésio/química , Microscopia Eletrônica de Varredura , Espectrometria por Raios X , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA