Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 3867, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264619

RESUMO

Subsidence induced by groundwater depletion is a grave problem in many regions around the world, leading to a permanent loss of groundwater storage within an aquifer and even producing structural damage at the Earth's surface. California's Tulare Basin is no exception, experiencing about a meter of subsidence between 2015 and 2020. However, understanding the relationship between changes in groundwater volumes and ground deformation has proven difficult. We employ surface displacement measurements from Interferometric Synthetic Aperture Radar (InSAR) and gravimetric estimates of terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE) satellite pair to characterize the hydrological dynamics within the Tulare basin. The removal of the long-term aquifer compaction from the InSAR time series reveals coherent short-term variations that correlate with hydrological features. For example, in the winter of 2018-2019 uplift is observed at the confluence of several rivers and streams that drain into the southeastern edge of the basin. These observations, combined with estimates of mass changes obtained from the orbiting GRACE satellites, form the basis for imaging the monthly spatial variations in water volumes. This approach facilitates the quick and effective synthesis of InSAR and gravimetric datasets and will aid efforts to improve our understanding and management of groundwater resources around the world.

2.
J Hydrometeorol ; 21(1): 59-71, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32905519

RESUMO

We evaluate the impact of Gravity Recovery and Climate Experiment data assimilation (GRACE-DA) on seasonal hydrological forecast initialization over the U.S., focusing on groundwater storage. GRACE-based terrestrial water storage (TWS) estimates are assimilated into a land surface model for the 2003-2016 period. Three-month hindcast (i.e., forecast of past events) simulations are initialized using states from the reference (no data assimilation) and GRACE-DA runs. Differences between the two initial hydrological condition (IHC) sets are evaluated for two forecast techniques at 305 wells where depth-to-water-table measurements are available. Results show that using GRACE-DA-based IHC improves seasonal groundwater forecast performance in terms of both RMSE and correlation. While most regions show improvement, degradation is common in the High Plains, where withdrawals for irrigation practices affect groundwater variability more strongly than the weather variability, which demonstrates the need for simulating such activities. These findings contribute to recent efforts towards an improved U.S. drought monitor and forecast system.

3.
J Hydrometeorol ; 20(8): 1595-1617, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32908457

RESUMO

Terrestrial hydrologic trends over the conterminous United States are estimated for 1980-2015 using the National Climate Assessment Land Data Assimilation System (NCA-LDAS) reanalysis. NCA-LDAS employs the uncoupled Noah version 3.3 land surface model at 0.125°× 1258° forced with NLDAS-2 meteorology, rescaled Climate Prediction Center precipitation, and assimilated satellite-based soil moisture, snow depth, and irrigation products. Mean annual trends are reported using the nonparametric Mann-Kendall test at p < 0.1 significance. Results illustrate the interrelationship between regional gradients in forcing trends and trends in other land energy and water stores and fluxes. Mean precipitation trends range from +3 to +9 mm yr-1 in the upper Great Plains and Northeast to -1 to -9 mm yr-1 in the West and South, net radiation flux trends range from 10.05 to 10.20 W m-2 yr-1 in the East to -0.05 to -0.20 W m-2 yr-1 in the West, and U.S.-wide temperature trends average about +0.03 K yr-1. Trends in soil moisture, snow cover, latent and sensible heat fluxes, and runoff are consistent with forcings, contributing to increasing evaporative fraction trends from west to east. Evaluation of NCA-LDAS trends compared to independent data indicates mixed results. The RMSE of U.S.-wide trends in number of snow cover days improved from 3.13 to 2.89 days yr-1 while trend detection increased 11%. Trends in latent heat flux were hardly affected, with RMSE decreasing only from 0.17 to 0.16 W m-2 yr-1, while trend detection increased 2%. NCA-LDAS runoff trends degraded significantly from 2.6 to 16.1 mm yr-1 while trend detection was unaffected. Analysis also indicated that NCA-LDAS exhibits relatively more skill in low precipitation station density areas, suggesting there are limits to the effectiveness of satellite data assimilation in densely gauged regions. Overall, NCA-LDAS demonstrates capability for quantifying physically consistent, U.S. hydrologic climate trends over the satellite era.

4.
J Adv Model Earth Syst ; 10(11): 2933-2951, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30949292

RESUMO

The purpose of this study was to evaluate snow and snowmelt simulated by version 4 of the Community Land Model (CLM4). We performed uncoupled CLM4 simulations, forced by Modem-Era Retrospective Analysis for Research and Applications Land-only (MERRA-Land) meteorological fields. GlobSnow snow cover fraction (SCF), snow water equivalent (SWE) and satellite-based passive microwave (PMW) snowmelt-off day of year (MoD) data were used to evaluate SCF, SWE, and snowmelt simulations. Simulated runoff was then fed into a river routing scheme and evaluation was performed at 408 snow-dominated catchments using gauge observations. CLM4 and GlobSnow snow cover extent showed a strong agreement, especially during the peak snow cover months. Overall there was a good correlation between simulated and observed SWE (correlation coefficient, R = 0.6). Simulated and observed SWE were similar over areas with relatively flat terrain and moderate forest density. The simulated MoD agreed (MoD differences (CLM4-PMW) = +/-7 days) with observations over 39.4% of the study domain. Snowmelt-off occurred earlier in the model compared to the observations over 39.5 % of the domain and later over 21.1% of the domain. Large differences of MoD were seen in the areas with complex terrain and dense forest cover. We also found that, although streamflow seasonal phase was accurately modeled (R=0.9), the peaks controlled by snowmelt were underestimated. Routed CLM4 streamflow tended to occur early (by 10 days on average).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA