Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Life (Basel) ; 12(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35629422

RESUMO

Cystic fibrosis (CF) airways are affected by a deranged repair of the damaged epithelium resulting in altered regeneration and differentiation. Previously, we showed that human amniotic mesenchymal stem cells (hAMSCs) corrected base defects of CF airway epithelial cells via connexin (CX)43-intercellular gap junction formation. In this scenario, it is unknown whether hAMSCs, or fibroblasts sharing some common characteristics with MSCs, can operate a faster repair of a damaged airway epithelium. A tip-based scratch assay was employed to study wound repair in monolayers of CFBE14o- cells (CFBE, homozygous for the F508del mutation). hAMSCs were either co-cultured with CFBE cells before the wound or added to the wounded monolayers. NIH-3T3 fibroblasts (CX43+) were added to wounded cells. HeLa cells (CX43-) were used as controls. γ-irradiation was optimized to block CFBE cell proliferation. A specific siRNA was employed to downregulate CX43 expression in CFBE cells. CFBE cells showed a delayed repair as compared with wt-CFTR cells (16HBE41o-). hAMSCs enhanced the wound repair rate of wounded CFBE cell monolayers, especially when added post wounding. hAMSCs and NIH-3T3 fibroblasts, but not HeLa cells, increased wound closure of irradiated CFBE monolayers. CX43 downregulation accelerated CFBE wound repair rate without affecting cell proliferation. We conclude that hAMSCs and fibroblasts enhance the repair of a wounded CF airway epithelium, likely through a CX43-mediated mechanism mainly involving cell migration.

2.
Tissue Eng Part A ; 27(9-10): 631-641, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32907520

RESUMO

In the context of biointeractive dressings used for enhancing wound healing, the use of stromal vascular fraction (SVF) or adipose-derived stem cells (ASCs) hereof derived has not been fully exploited yet. Noncultured SVF, a heterogeneous mesenchymal population of cells, is attractive in the field of dermal regeneration because it can be instantaneously obtained, avoids genomic alterations, and is comparatively safer than cultured ASCs. Integra® Dermal Regeneration Template (DRT) was sprinkled with ASCs in complete medium supplemented with 10% fetal bovine serum (FBS), or SVF, obtained from emulsified or nonemulsified fat, in medium supplemented with 2% platelet-rich plasma (PRP). The presence and differentiation of cells were evaluated by standard histochemistry and immunohistochemistry, whereas conditioned media were analyzed for vascular endothelial growth factors (VEGF) by ELISA. In vitro experiments were conducted to analyze ASC proliferation in the presence of either FBS or PRP. Deposition of ASCs in medium supplemented with FBS caused their integration into Integra DRT as early as 1 h. ASCs were found as aggregates until 6-10 days without forming organized structures. When seeded onto Integra DRT, SVF cells in medium supplemented with PRP formed aggregates at early times, which at 7 and 10 days organized into vascular-like structures, lined by CD31+ and smooth muscle actin-positive cells. With nonemulsified fat, the lacunar structures did not show an organized distribution of SVF cells. PRP induced ASC proliferation although at lower level than FBS. VEGF secretion was enhanced when fat emulsification was introduced into the protocol. In conclusion, the combination of SVF cells obtained from emulsified fat, PRP, and Integra DRT exhibit synergistic effect on the formation of vessel-like structures indicating a step forward aimed at regenerative surgery for chronic wound healing.


Assuntos
Tecido Adiposo , Plasma Rico em Plaquetas , Adipócitos , Células Cultivadas , Células-Tronco , Cicatrização
3.
Stem Cells Int ; 2020: 7056261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399048

RESUMO

The continuous improvements in the field of both regenerative medicine and tissue engineering have allowed the design of new and more efficacious strategies for the treatment of chronic or hard-to-heal skin wounds, which represent heavy burden, from a medical and economic point of view. These novel approaches are based on the usage of three key methodologies: stem cells, growth factors, and biomimetic scaffolds. These days, the adipose tissue can be considered the main source of multipotent mesenchymal stem cells, especially adipose-derived stem cells (ASCs). ASCs are easily accessible from various fat depots and show an intrinsic plasticity in giving rise to cell types involved in wound healing and angiogenesis. ASCs can be found in fat grafts, historically used in the treatment of chronic wounds, and have been evaluated as such in both animal models and human trials, to exploit their capability of accelerating wound closure and inducing a correct remodeling of the newly formed fibrovascular tissue. Since survival and fitness of ASCs need to be improved, they are now employed in conjunction with advanced wound dressings, together with dermal regenerative templates and platelet-rich plasma (as a source of growth and healing factors). In this work, we provide an overview of the current knowledge on the topic, based on existing studies and on our own experience.

4.
Stem Cells Int ; 2018: 1203717, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29531530

RESUMO

We previously found that human amniotic mesenchymal stem cells (hAMSCs) in coculture with CF immortalised airway epithelial cells (CFBE41o- line, CFBE) on Transwell® filters acquired an epithelial phenotype and led to the expression of a mature and functional CFTR protein. In order to explore the role of gap junction- (GJ-) mediated intercellular communication (GJIC) in this rescue, cocultures (hAMSC : CFBE, 1 : 5 ratio) were studied for the formation of GJIC, before and after silencing connexin 43 (Cx43), a major component of GJs. Functional GJs in cocultures were inhibited when the expression of the Cx43 protein was downregulated. Transfection of cocultures with siRNA against Cx43 resulted in the absence of specific CFTR signal on the apical membrane and reduction in the mature form of CFTR (band C), and in parallel, the CFTR-dependent chloride channel activity was significantly decreased. Cx43 downregulation determined also a decrease in transepithelial resistance and an increase in paracellular permeability as compared with control cocultures, implying that GJIC may regulate CFTR expression and function that in turn modulate airway epithelium tightness. These results indicate that GJIC is involved in the correction of CFTR chloride channel activity upon the acquisition of an epithelial phenotype by hAMSCs in coculture with CF cells.

5.
Expert Opin Biol Ther ; 18(3): 281-292, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29216777

RESUMO

INTRODUCTION: Cystic fibrosis (CF) is a genetic syndrome with a high mortality rate due to severe lung disease. Despite having several drugs targeting specific mutated CFTR proteins already in clinical trials, new therapies, based on stem cells, are also emerging to treat those patients. AREAS COVERED: The authors review the main sources of stem cells, including embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs), gestational stem cells, and adult stem cells, such as mesenchymal stem cells (MSCs) in the context of CF. Furthermore, they describe the main animal and human models of lung physiology and pathology, involved in the optimization of these stem cell-applied therapies in CF. EXPERT OPINION: ESCs and iPSCs are emerging sources for disease modeling and drug discovery purposes. The allogeneic transplant of healthy MSCs, that acts independently to specific mutations, is under intense scrutiny due to their secretory, immunomodulatory, anti-inflammatory and anti-bacterial properties. The main challenge for future developments will be to get exogenous stem cells into the appropriate lung location, where they can regenerate endogenous stem cells and act as inflammatory modulators. The clinical application of stem cells for the treatment of CF certainly warrants further insight into pre-clinical models, including large animals, organoids, decellularized organs and lung bioengineering.


Assuntos
Fibrose Cística/terapia , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão/patologia , Pulmão/fisiologia , Células-Tronco/citologia
6.
Open Med (Wars) ; 12: 376-383, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104943

RESUMO

Transfusion (or drinking) of blood or of its components has been thought as a rejuvenation method since ancient times. Parabiosis, the procedure of joining two animals so that they share each others blood circulation, has revitalized the concept of blood as a putative drug. Since 2005, a number of papers have reported the anti-ageing effect of heterochronic parabiosis, which is joining an aged mouse to a young partner. The hallmark of aging is the decline of regenerative properties in most tissues, partially attributed to impaired function of stem and progenitor cells. In the parabiosis experiments, it was elegantly shown that factors derived from the young systemic environment are able to activate molecular signaling pathways in hepatic, muscle or neural stem cells of the old parabiont leading to increased tissue regeneration. Eventually, further studies have brought to identify some soluble factors in part responsible for these rejuvenating effects, including the chemokine CCL11, the growth differentiation factor 11, a member of the TGF-ß superfamily, and oxytocin. The question about giving whole blood or specific factors in helping rejuvenation is open, as well as the mechanisms of action of these factors, deserving further studies to be translated into the life of (old) human beings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA