Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Glob Chang Biol ; 29(21): 6040-6065, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37605971

RESUMO

Insect and disease outbreaks in forests are biotic disturbances that can profoundly alter ecosystem dynamics. In many parts of the world, these disturbance regimes are intensifying as the climate changes and shifts the distribution of species and biomes. As a result, key forest ecosystem services, such as carbon sequestration, regulation of water flows, wood production, protection of soils, and the conservation of biodiversity, could be increasingly compromised. Despite the relevance of these detrimental effects, there are currently no spatially detailed databases that record insect and disease disturbances on forests at the pan-European scale. Here, we present the new Database of European Forest Insect and Disease Disturbances (DEFID2). It comprises over 650,000 harmonized georeferenced records, mapped as polygons or points, of insects and disease disturbances that occurred between 1963 and 2021 in European forests. The records currently span eight different countries and were acquired through diverse methods (e.g., ground surveys, remote sensing techniques). The records in DEFID2 are described by a set of qualitative attributes, including severity and patterns of damage symptoms, agents, host tree species, climate-driven trigger factors, silvicultural practices, and eventual sanitary interventions. They are further complemented with a satellite-based quantitative characterization of the affected forest areas based on Landsat Normalized Burn Ratio time series, and damage metrics derived from them using the LandTrendr spectral-temporal segmentation algorithm (including onset, duration, magnitude, and rate of the disturbance), and possible interactions with windthrow and wildfire events. The DEFID2 database is a novel resource for many large-scale applications dealing with biotic disturbances. It offers a unique contribution to design networks of experiments, improve our understanding of ecological processes underlying biotic forest disturbances, monitor their dynamics, and enhance their representation in land-climate models. Further data sharing is encouraged to extend and improve the DEFID2 database continuously. The database is freely available at https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/FOREST/DISTURBANCES/DEFID2/.

3.
Sci Data ; 9(1): 37, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115529

RESUMO

We present "EU-Trees4F", a dataset of current and future potential distributions of 67 tree species in Europe at 10 km spatial resolution. We provide both climatically suitable future areas of occupancy and the future distribution expected under a scenario of natural dispersal for two emission scenarios (RCP 4.5 and RCP 8.5) and three time steps (2035, 2065, and 2095). Also, we provide a version of the dataset where tree ranges are limited by future land use. These data-driven projections were made using an ensemble species distribution model calibrated using EU-Forest, a comprehensive dataset of tree species occurrences for Europe, and driven by seven bioclimatic parameters derived from EURO-CORDEX regional climate model simulations, and two soil parameters. "EU-Trees4F", can benefit various research fields, including forestry, biodiversity, ecosystem services, and bio-economy. Possible applications include the calibration or benchmarking of dynamic vegetation models, or informing forest adaptation strategies based on assisted tree migration. Given the multiple European policy initiatives related to forests, this dataset represents a timely and valuable resource to support policymaking.

4.
Nat Commun ; 12(1): 7282, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907163

RESUMO

Ecosystems face both local hazards, such as over-exploitation, and global hazards, such as climate change. Since the impact of local hazards attenuates with distance from humans, local extinction risk should decrease with remoteness, making faraway areas safe havens for biodiversity. However, isolation and reduced anthropogenic disturbance may increase ecological specialization in remote communities, and hence their vulnerability to secondary effects of diversity loss propagating through networks of interacting species. We show this to be true for reef fish communities across the globe. An increase in fish-coral dependency with the distance of coral reefs from human settlements, paired with the far-reaching impacts of global hazards, increases the risk of fish species loss, counteracting the benefits of remoteness. Hotspots of fish risk from fish-coral dependency are distinct from those caused by direct human impacts, increasing the number of risk hotspots by ~30% globally. These findings might apply to other ecosystems on Earth and depict a world where no place, no matter how remote, is safe for biodiversity, calling for a reconsideration of global conservation priorities.


Assuntos
Antozoários/fisiologia , Branqueamento de Corais/efeitos adversos , Recifes de Corais , Peixes/fisiologia , Animais , Efeitos Antropogênicos , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Humanos , Análise Espacial
5.
Proc Biol Sci ; 288(1953): 20210274, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34187190

RESUMO

Reef fishes are a treasured part of marine biodiversity, and also provide needed protein for many millions of people. Although most reef fishes might survive projected increases in ocean temperatures, corals are less tolerant. A few fish species strictly depend on corals for food and shelter, suggesting that coral extinctions could lead to some secondary fish extinctions. However, secondary extinctions could extend far beyond those few coral-dependent species. Furthermore, it is yet unknown how such fish declines might vary around the world. Current coral mass mortalities led us to ask how fish communities would respond to coral loss within and across oceans. We mapped 6964 coral-reef-fish species and 119 coral genera, and then regressed reef-fish species richness against coral generic richness at the 1° scale (after controlling for biogeographic factors that drive species diversification). Consistent with small-scale studies, statistical extrapolations suggested that local fish richness across the globe would be around half its current value in a hypothetical world without coral, leading to more areas with low or intermediate fish species richness and fewer fish diversity hotspots.


Assuntos
Antozoários , Tetraodontiformes , Animais , Biodiversidade , Recifes de Corais , Peixes , Humanos , Oceanos e Mares
6.
Nat Commun ; 12(1): 1081, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623030

RESUMO

Forest disturbance regimes are expected to intensify as Earth's climate changes. Quantifying forest vulnerability to disturbances and understanding the underlying mechanisms is crucial to develop mitigation and adaptation strategies. However, observational evidence is largely missing at regional to continental scales. Here, we quantify the vulnerability of European forests to fires, windthrows and insect outbreaks during the period 1979-2018 by integrating machine learning with disturbance data and satellite products. We show that about 33.4 billion tonnes of forest biomass could be seriously affected by these disturbances, with higher relative losses when exposed to windthrows (40%) and fires (34%) compared to insect outbreaks (26%). The spatial pattern in vulnerability is strongly controlled by the interplay between forest characteristics and background climate. Hotspot regions for vulnerability are located at the borders of the climate envelope, in both southern and northern Europe. There is a clear trend in overall forest vulnerability that is driven by a warming-induced reduction in plant defence mechanisms to insect outbreaks, especially at high latitudes.


Assuntos
Mudança Climática , Florestas , Biomassa , Europa (Continente) , Modelos Teóricos , Fatores de Tempo
7.
Epidemics ; 30: 100384, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31951877

RESUMO

Outbreaks of a plant disease in a landscape can be meaningfully modelled using networks with nodes representing individual crop-fields, and edges representing potential infection pathways between them. Their spatial structure, which resembles that of a regular lattice, makes such networks fairly robust against epidemics. Yet, it is well-known how the addition of a few shortcuts can turn robust regular lattices into vulnerable 'small world' networks. Although the relevance of this phenomenon has been shown theoretically for networks with nodes corresponding to individual host plants, its real-world implications at a larger scale (i.e. in networks with nodes representing crop fields or other plantations) remain elusive. Focusing on realistic spatial networks connecting olive orchards in Andalusia (Southern Spain), the world's leading olive producer, we show how even very small probabilities of long distance dispersal of infectious vectors result in a small-world effect that dramatically exacerbates a hypothetical outbreak of a disease targeting olive trees (loosely modelled on known epidemiological information on the bacterium Xylella fastidiosa, an important emerging threat for European agriculture). More specifically, we found that the probability of long distance vector dispersal has a disproportionately larger effect on epidemic dynamics compared to pathogen's intrinsic infectivity, increasing total infected area by up to one order of magnitude (in the absence of quarantine). Furthermore, even a very small probability of long distance dispersal increased the effort needed to halt a hypothetical outbreak through quarantine by about 50% in respect to scenarios modelling local/short distance pathogen's dispersal only. This highlights how identifying (and disrupting) long distance dispersal processes may be more efficacious to contain a plant disease epidemic than surveillance and intervention concentrated on local scale transmission processes.

8.
Nature ; 562(7725): 57-62, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30258229

RESUMO

The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.


Assuntos
Aquecimento Global , Fenômenos Fisiológicos Vegetais , Plantas/anatomia & histologia , Tundra , Biometria , Mapeamento Geográfico , Umidade , Fenótipo , Solo/química , Análise Espaço-Temporal , Temperatura , Água/análise
9.
Sci Rep ; 7(1): 71, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28250430

RESUMO

The insect vector borne bacterium Xylella fastidiosa was first detected in olive trees in Southern Italy in 2013, and identified as the main culprit behind the 'olive quick decline syndrome'. Since then, the disease has spread rapidly through Italy's main olive oil producing region. The epidemiology of the outbreak is largely unstudied, with the list of X. fastidiosa hosts and vectors in Europe likely incomplete, and the role humans play in dispersal unknown. These knowledge gaps have led to management strategies based on general assumptions that require, among others, local vector control and, in certain areas, the destruction of infected plants and healthy ones around them in an attempt to eradicate or halt the spreading pest. Here we show that, regardless of epidemiological uncertainties, the mere distribution of olive orchards in Southern Italy makes the chances of eradicating X. fastidiosa from the region extremely slim. Our results imply that Southern Italy is becoming a reservoir for X. fastidiosa. As a consequence, management strategies should keep the prevalence of X. fastidiosa in the region as low as possible, primarily through vector control, lest the pathogen, that has also been detected in southern France and the island of Mallorca (Spain), continues spreading through Italy and Europe.


Assuntos
Infecções por Bactérias Gram-Negativas/epidemiologia , Olea/microbiologia , Xylella/fisiologia , Reservatórios de Doenças/microbiologia , Itália/epidemiologia , Modelos Teóricos , Doenças das Plantas/microbiologia , Prevalência , Software
10.
Sci Rep ; 6: 19000, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26751166

RESUMO

Seasonal asymmetry in the interannual variations in the daytime and nighttime climate in the Northern Hemisphere (NH) is well documented, but its consequences for vegetation activity remain poorly understood. Here, we investigate the interannual responses of vegetation activity to variations of seasonal mean daytime and nighttime climate in NH (>30 °N) during the past decades using remote sensing retrievals, FLUXNET and tree ring data. Despite a generally significant and positive response of vegetation activity to seasonal mean maximum temperature (Tmax) in ~22-25% of the boreal (>50 °N) NH between spring and autumn, spring-summer progressive water limitations appear to decouple vegetation activity from the mean summer Tmax, particularly in climate zones with dry summers. Drought alleviation during autumn results in vegetation recovery from the marked warming-induced drought limitations observed in spring and summer across 24-26% of the temperate NH. Vegetation activity exhibits a pervasively negative correlation with the autumn mean minimum temperature, which is in contrast to the ambiguous patterns observed in spring and summer. Our findings provide new insights into how seasonal asymmetry in the interannual variations in the mean daytime and nighttime climate interacts with water limitations to produce spatiotemporally variable responses of vegetation growth.


Assuntos
Clima , Geografia , Plantas/metabolismo , Estações do Ano
11.
Trends Plant Sci ; 20(2): 114-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25500552

RESUMO

Terrestrial disturbances are accelerating globally, but their full impact is not quantified because we lack an adequate monitoring system. Remote sensing offers a means to quantify the frequency and extent of disturbances globally. Here, we review the current application of remote sensing to this problem and offer a framework for more systematic analysis in the future. We recommend that any proposed monitoring system should not only detect disturbances, but also be able to: identify the proximate cause(s); integrate a range of spatial scales; and, ideally, incorporate process models to explain the observed patterns and predicted trends in the future. Significant remaining challenges are tied to the ecology of disturbances. To meet these challenges, more effort is required to incorporate ecological principles and understanding into the assessments of disturbance worldwide.


Assuntos
Mudança Climática , Ecossistema , Monitoramento Ambiental , Fenômenos Fisiológicos Vegetais , Tecnologia de Sensoriamento Remoto , Astronave
12.
Glob Chang Biol ; 20(10): 3147-58, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24890614

RESUMO

Satellite-derived indices of photosynthetic activity are the primary data source used to study changes in global vegetation productivity over recent decades. Creating coherent, long-term records of vegetation activity from legacy satellite data sets requires addressing many factors that introduce uncertainties into vegetation index time series. We compared long-term changes in vegetation productivity at high northern latitudes (>50°N), estimated as trends in growing season NDVI derived from the most widely used global NDVI data sets. The comparison included the AVHRR-based GIMMS-NDVI version G (GIMMSg ) series, and its recent successor version 3g (GIMMS3g ), as well as the shorter NDVI records generated from the more modern sensors, SeaWiFS, SPOT-VGT, and MODIS. The data sets from the latter two sensors were provided in a form that reduces the effects of surface reflectance associated with solar and view angles. Our analysis revealed large geographic areas, totaling 40% of the study area, where all data sets indicated similar changes in vegetation productivity over their common temporal record, as well as areas where data sets showed conflicting patterns. The newer, GIMMS3g data set showed statistically significant (α = 0.05) increases in vegetation productivity (greening) in over 15% of the study area, not seen in its predecessor (GIMMSg ), whereas the reverse was rare (<3%). The latter has implications for earlier reports on changes in vegetation activity based on GIMMSg , particularly in Eurasia where greening is especially pronounced in the GIMMS3g data. Our findings highlight both critical uncertainties and areas of confidence in the assessment of ecosystem-response to climate change using satellite-derived indices of photosynthetic activity. Broader efforts are required to evaluate NDVI time series against field measurements of vegetation growth, primary productivity, recruitment, mortality, and other biological processes in order to better understand ecosystem responses to environmental change over large areas.


Assuntos
Monitoramento Ambiental/métodos , Fotossíntese , Plantas , Mudança Climática , Ecossistema , Monitoramento Ambiental/instrumentação , Astronave , Luz Solar
13.
Glob Chang Biol ; 19(11): 3449-62, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23813896

RESUMO

Russia's boreal (taiga) biome will likely contract sharply and shift northward in response to 21st century climatic change, yet few studies have examined plant response to climatic variability along the northern margin. We quantified climate dynamics, trends in plant growth, and growth-climate relationships across the tundra shrublands and Cajander larch (Larix cajanderi Mayr.) woodlands of the Kolyma river basin (657 000 km(2) ) in northeastern Siberia using satellite-derived normalized difference vegetation indices (NDVI), tree ring-width measurements, and climate data. Mean summer temperatures (Ts ) increased 1.0 °C from 1938 to 2009, though there was no trend (P > 0.05) in growing year precipitation or climate moisture index (CMIgy ). Mean summer NDVI (NDVIs ) increased significantly from 1982 to 2010 across 20% of the watershed, primarily in cold, shrub-dominated areas. NDVIs positively correlated (P < 0.05) with Ts across 56% of the watershed (r = 0.52 ± 0.09, mean ± SD), principally in cold areas, and with CMIgy across 9% of the watershed (r = 0.45 ± 0.06), largely in warm areas. Larch ring-width measurements from nine sites revealed that year-to-year (i.e., high-frequency) variation in growth positively correlated (P < 0.05) with June temperature (r = 0.40) and prior summer CMI (r = 0.40) from 1938 to 2007. An unexplained multi-decadal (i.e., low-frequency) decline in annual basal area increment (BAI) occurred following the mid-20th century, but over the NDVI record there was no trend in mean BAI (P > 0.05), which significantly correlated with NDVIs (r = 0.44, P < 0.05, 1982-2007). Both satellite and tree-ring analyses indicated that plant growth was constrained by both low temperatures and limited moisture availability and, furthermore, that warming enhanced growth. Impacts of future climatic change on forests near treeline in Arctic Russia will likely be influenced by shifts in both temperature and moisture, which implies that projections of future forest distribution and productivity in this area should take into account the interactions of energy and moisture limitations.


Assuntos
Mudança Climática , Larix/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Sibéria , Temperatura
14.
Ecol Lett ; 14(4): 373-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21332901

RESUMO

Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline.


Assuntos
Mudança Climática , Ecossistema , Picea/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Alaska , Secas , História do Século XX
15.
Proc Natl Acad Sci U S A ; 107(33): 14685-90, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20679201

RESUMO

Drought exerts a strong influence on tropical forest metabolism, carbon stocks, and ultimately the flux of carbon to the atmosphere. Satellite-based studies have suggested that Amazon forests green up during droughts because of increased sunlight, whereas field studies have reported increased tree mortality during severe droughts. In an effort to reconcile these apparently conflicting findings, we conducted an analysis of climate data, field measurements, and improved satellite-based measures of forest photosynthetic activity. Wet-season precipitation and plant-available water (PAW) decreased over the Amazon Basin from 1996-2005, and photosynthetically active radiation (PAR) and air dryness (expressed as vapor pressure deficit, VPD) increased from 2002-2005. Using improved enhanced vegetation index (EVI) measurements (2000-2008), we show that gross primary productivity (expressed as EVI) declined with VPD and PAW in regions of sparse canopy cover across a wide range of environments for each year of the study. In densely forested areas, no climatic variable adequately explained the Basin-wide interannual variability of EVI. Based on a site-specific study, we show that monthly EVI was relatively insensitive to leaf area index (LAI) but correlated positively with leaf flushing and PAR measured in the field. These findings suggest that production of new leaves, even when unaccompanied by associated changes in LAI, could play an important role in Basin-wide interannual EVI variability. Because EVI variability was greatest in regions of lower PAW, we hypothesize that drought could increase EVI by synchronizing leaf flushing via its effects on leaf bud development.


Assuntos
Ecossistema , Estações do Ano , Árvores/crescimento & desenvolvimento , Clima Tropical , Geografia , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Chuva , Luz Solar , Água/farmacologia
16.
Int J Biometeorol ; 51(6): 513-24, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17333288

RESUMO

Fennoscandia is characterized by a large degree of climatic diversity. Vegetation phenology may respond differently to climate change according to the climatic gradients within the region. To map the annual and spatial variability of the start of the growing season (SOS) in Fennoscandia, the twice-monthly GIMMS-NDVI satellite dataset was used. The data set has an 8 x 8 km(2) spatial resolution and covers the period from 1982 to 2002. The mapping was done by applying pixel-specific threshold values to the NDVI data. These threshold values were determined form surface phenology data on birch (Betula sp.). Then, we produced NDVI based maps of SOS for each of the 21 years. Finally, the time differences between the SOS and the last day of snow cover, as well as dates of passing different temperatures, were analyzed for 21 meteorological stations. The analyses showed that 1985 was the most extreme year in terms of late SOS. In terms of early SOS, the year 1990 was by far the most extreme. Locally, the SOS has an average range of 1 month between the earliest and latest recorded SOS, with a trend towards a bigger range in the oceanic parts. The results indicate that a 1 degrees C increase in spring temperatures in general corresponds to an advancement of 5-6 days in SOS. However, there is a clear trend according to the degree of oceanity, with a 1 degrees C increase in the most oceanic parts corresponding roughly to 7-9 days earlier SOS, compared to less than 5 days earlier in the continental parts.


Assuntos
Betula/crescimento & desenvolvimento , Clima , Bases de Dados Factuais , Efeito Estufa , Conceitos Meteorológicos , Noruega , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA