RESUMO
In genetic diseases like hypertrophic cardiomyopathy, reliable quantification of the expression level of mutant protein can play an important role in disease research, diagnosis, treatment and prognosis. For heterozygous ß-myosin heavy chain (ß-MyHC) mutations it has been shown that disease severity is related to the fraction of mutant protein in the myocardium. Yet, heart tissue from patients with genetically characterized diseases is scarce. Here we asked, if even in the case of small endomyocardial biopsies, single quantifications produce reliable results. Myocardial samples were taken from four different regions of an explanted heart of a patient with hypertrophic cardiomyopathy carrying point mutation p.Gly716Arg in ß-MyHC. From both, large samples (15 mg) and small, endomyocardial biopsy-sized samples (≤ 1 mg) myosin was extracted and enzymatically digested to yield a specific peptide of interest that allowed to distinguish mutant and wild-type ß-MyHC. Absolute quantification by mass spectrometry (AQUA) of the peptide of interest was performed repeatedly for both sample sizes to determine the fraction of mutant ß-MyHC. Fractions of mutant ß-MyHC (32% on average) showed only small differences between the four cardiac regions and for large and small samples. The standard deviations were smaller than five percentage points for all cardiac regions. The two quantification methods (large and small sample size) produce results with comparable accuracy and precision. Consequently, with our method even small endomyocardial biopsies allow reliable protein quantification for potential diagnostic purposes.
RESUMO
Hypertrophic Cardiomyopathy (HCM) has been related to many different mutations in more than 20 different, mostly sarcomeric proteins. While development of the HCM-phenotype is thought to be triggered by the different mutations, a common mechanism remains elusive. Studying missense-mutations in the ventricular beta-myosin heavy chain (ß-MyHC, MYH7) we hypothesized that significant contractile heterogeneity exists among individual cardiomyocytes of HCM-patients that results from cell-to-cell variation in relative expression of mutated vs. wildtype ß-MyHC. To test this hypothesis, we measured force-calcium-relationships of cardiomyocytes isolated from myocardium of heterozygous HCM-patients with either ß-MyHC-mutation Arg723Gly or Arg200Val, and from healthy controls. From the myocardial samples of the HCM-patients we also obtained cryo-sections, and laser-microdissected single cardiomyocytes for quantification of mutated vs. wildtype MYH7-mRNA using a single cell RT-qPCR and restriction digest approach. We characterized gene transcription by visualizing active transcription sites by fluorescence in situ hybridization of intronic and exonic sequences of MYH7-pre-mRNA. For both mutations, cardiomyocytes showed large cell-to-cell variation in Ca++-sensitivity. Interestingly, some cardiomyocytes were essentially indistinguishable from controls what might indicate that they had no mutant ß-MyHC while others had highly reduced Ca++-sensitivity suggesting substantial fractions of mutant ß-MyHC. Single-cell MYH7-mRNA-quantification in cardiomyocytes of the same patients revealed high cell-to-cell variability of mutated vs. wildtype mRNA, ranging from essentially pure mutant to essentially pure wildtype MYH7-mRNA. We found 27% of nuclei without active transcription sites which is inconsistent with continuous gene transcription but suggests burst-like transcription of MYH7. Model simulations indicated that burst-like, stochastic on/off-switching of MYH7 transcription, which is independent for mutant and wildtype alleles, could generate the observed cell-to-cell variation in the fraction of mutant vs. wildtype MYH7-mRNA, a similar variation in ß-MyHC-protein, and highly heterogeneous Ca++-sensitivity of individual cardiomyocytes. In the long run, such contractile imbalance in the myocardium may well induce progressive structural distortions like cellular and myofibrillar disarray and interstitial fibrosis, as they are typically observed in HCM.
RESUMO
HCM, the most common inherited cardiac disease, is mainly caused by mutations in sarcomeric genes. More than a third of the patients are heterozygous for mutations in the MYH7 gene encoding for the ß-myosin heavy chain. In HCM-patients, expression of the mutant and the wildtype allele can be unequal, thus leading to fractions of mutant and wildtype mRNA and protein which deviate from 1:1. This so-called allelic imbalance was detected in whole tissue samples but also in individual cells. There is evidence that the severity of HCM not only depends on the functional effect of the mutation itself, but also on the fraction of mutant protein in the myocardial tissue. Allelic imbalance has been shown to occur in a broad range of genes. Therefore, we aimed to examine whether the MYH7-alleles are intrinsically expressed imbalanced or whether the allelic imbalance is solely associated with the disease. We compared the expression of MYH7-alleles in non-HCM donors and in HCM-patients with different MYH7-missense mutations. In the HCM-patients, we identified imbalanced as well as equal expression of both alleles. Also at the protein level, allelic imbalance was determined. Most interestingly, we also discovered allelic imbalance and balance in non-HCM donors. Our findings therefore strongly indicate that apart from mutation-specific mechanisms, also non-HCM associated allelic-mRNA expression regulation may account for the allelic imbalance of the MYH7 gene in HCM-patients. Since the relative amount of mutant mRNA and protein or the extent of allelic imbalance has been associated with the severity of HCM, individual analysis of the MYH7-allelic expression may provide valuable information for the prognosis of each patient.
Assuntos
Alelos , Desequilíbrio Alélico , Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Regulação Enzimológica da Expressão Gênica , Cadeias Pesadas de Miosina , Sarcômeros , Adulto , Miosinas Cardíacas/biossíntese , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Cadeias Pesadas de Miosina/biossíntese , Cadeias Pesadas de Miosina/genética , Sarcômeros/genética , Sarcômeros/metabolismo , Sarcômeros/patologiaRESUMO
Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant disease, which in about 30% of the patients is caused by missense mutations in one allele of the ß-myosin heavy chain (ß-MHC) gene (MYH7). To address potential molecular mechanisms underlying the family-specific prognosis, we determined the relative expression of mutant versus wild-type MYH7-mRNA. We found a hitherto unknown mutation-dependent unequal expression of mutant to wild-type MYH7-mRNA, which is paralleled by similar unequal expression of ß-MHC at the protein level. Relative abundance of mutated versus wild-type MYH7-mRNA was determined by a specific restriction digest approach and by real-time PCR (RT-qPCR). Fourteen samples from M. soleus and myocardium of 12 genotyped and clinically well-characterized FHC patients were analyzed. The fraction of mutated MYH7-mRNA in five patients with mutation R723G averaged to 66 and 68% of total MYH7-mRNA in soleus and myocardium, respectively. For mutations I736T, R719W and V606M, fractions of mutated MYH7-mRNA in M. soleus were 39, 57 and 29%, respectively. For all mutations, unequal abundance was similar at the protein level. Importantly, fractions of mutated transcripts were comparable among siblings, in younger relatives and unrelated carriers of the same mutation. Hence, the extent of unequal expression of mutated versus wild-type transcript and protein is characteristic for each mutation, implying cis-acting regulatory mechanisms. Bioinformatics suggest mRNA stability or splicing effectors to be affected by certain mutations. Intriguingly, we observed a correlation between disease expression and fraction of mutated mRNA and protein. This strongly suggests that mutation-specific allelic imbalance represents a new pathogenic factor for FHC.
Assuntos
Cardiomiopatia Hipertrófica Familiar/genética , Miosinas Ventriculares/genética , Adulto , Alelos , Desequilíbrio Alélico , Análise Mutacional de DNA , Genótipo , Humanos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Estabilidade de RNA , RNA Mensageiro/análise , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto JovemRESUMO
A liquid chromatography/electrospray ionization mass spectrometry (nano-LC/ESI-MS) approach is described by which abundance of proteins (e.g., of beta-myosin heavy chain; MW 223 kDa) carrying a point mutation can be determined in tissue samples where the mutant protein is coexpressed with its wild-type forms. After enzymatic cleavage of the extracted parent protein, mutant and wild-type species of the peptide with the locus of the point mutation were quantified. Synthetic peptides, identical to wild-type and mutant peptides but labeled with stable isotopes ((13)C, (15)N), were added in known amounts as internal standards. The peak areas obtained by MS for the stable-isotope-labeled peptides and for the native peptides were used for quantification. To demonstrate the suitability of this approach we determined the relative abundance of beta-myosin with the Arg723Gly exchange in muscle biopsies of patients with Familial Hypertrophic Cardiomyopathy (HCM). For two such patients the fraction of mutated myosin was 62%, i.e., significantly different from 50%, which is quite unexpected for an autosomal dominant disease in heterozygous patients. Correlation between abundance of mutant myosin and clinical malignancy seen for several mutations in the myosin head domain emphasizes the relevance of such quantification. The approach for quantification described here is generally applicable for quantification of proteins with single point mutations even if only small amounts of tissue are available.
Assuntos
Músculos/química , Miosinas/análise , Miosinas/genética , Mutação Puntual , Espectrometria de Massas por Ionização por Electrospray/métodos , Biópsia , Cardiomiopatia Hipertrófica Familiar/diagnóstico , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/patologia , Cromatografia Líquida , Humanos , Nanotecnologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/isolamento & purificação , Padrões de ReferênciaRESUMO
Disease-causing mutations in cardiac myosin heavy chain (beta-MHC) are identified in about one-third of families with hypertrophic cardiomyopathy (HCM). The effect of myosin mutations on calcium sensitivity of the myofilaments, however, is largely unknown. Because normal and mutant cardiac MHC are also expressed in slow-twitch skeletal muscle, which is more easily accessible and less subject to the adaptive responses seen in myocardium, we compared the calcium sensitivity (pCa(50)) and the steepness of force-pCa relations (cooperativity) of single soleus muscle fibers from healthy individuals and from HCM patients of three families with selected myosin mutations. Fibers with the Arg723Gly and Arg719Trp mutations showed a decrease in mean pCa(50), whereas those with the Ile736Thr mutation showed slightly increased mean pCa(50) with higher active forces at low calcium concentrations and residual active force even under relaxing conditions. In addition, there was a marked variability in pCa(50) between individual fibers carrying the same mutation ranging from an almost normal response to highly significant differences that were not observed in controls. While changes in mean pCa(50) may suggest specific pharmacological treatment (e.g., calcium antagonists), the observed large functional variability among individual muscle cells might negate such selective treatment. More importantly, the variability in pCa(50) from fiber to fiber is likely to cause imbalances in force generation and be the primary cause for contractile dysfunction and development of disarray in the myocardium.