Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lab Chip ; 22(12): 2364-2375, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35551303

RESUMO

There is a growing interest in developing personalized treatment strategies for each cancer patient, especially those with non-small cell lung carcinoma (NSCLC) which annually accounts for the majority of cancer related deaths in the US. Yet identifying the optimal NSCLC treatment strategy for each cancer patient is critical due to a multitude of mutations, some of which develop following initial therapy and can result in drug resistance. A key difficulty in developing personalized therapies in NSCLC is the lack of clinically relevant assay systems that are suitable to evaluate drug sensitivity using a minuscule amount of patient-derived material available following biopsies. Herein we leverage 3D printing to demonstrate a platform based on miniature microwells in agarose to culture cancer cell spheroids. The agarose wells were shaped by 3D printing molds with 1000 microwells with a U-shaped bottom. Three NSCLC cell lines (HCC4006, H1975 and A549) were used to demonstrate size uniformity, spheroid viability, biomarker expressions and drug response in 3D agarose microwells. Results show that our approach yielded spheroids of uniform size (coefficient of variation <22%) and high viability (>83% after 1 week-culture). Studies using epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKIs) drugs gefitinib and osimertinib showed clinically relevant responses. Based on the physical features, cell phenotypes, and responses to therapy of our spheroid models, we conclude that our platform is suitable for in vitro culture and drug evaluation, especially in cases when tumor sample is limited.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Avaliação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Sefarose
2.
Clin Transl Discov ; 2(4)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37396570

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide and is strongly associated with tobacco smoke exposure. Though smoking remains the most important and best studied risk factor, recent data suggests that several other carcinogens have a driving role in lung cancer development, particularly in select populations at risk of high or prolonged exposure. Hexavalent chromium [Cr(VI)] is a known carcinogen that is widely used in the manufacturing industry. While the link between Cr(VI) and lung cancer incidence is well-accepted, the mechanisms through which Cr(VI) promotes lung cancer development are poorly understood. In the present study by Ge and colleagues published in Clinical and Translational Medicine, the authors explored the effects of prolonged Cr(VI) on non-malignant lung epithelial cells. They determined that Cr(VI) initiates lung tumorigenesis by transforming a subpopulation of stem-like, tumor initiating cells with increased expression of Aldehyde dehydrogenase 1 family member A1 (ALDH1A1). The observed increase in ALDH1A1 was dependent on transcriptional upregulation via Krüppel-like factor 4 (KLF4), and associated with enhanced Epidermal Growth Factor (EGF) biosynthesis. Cr(VI)-transformed tumor initiating cells accelerated tumor formation in vivo, which was ameliorated by therapeutic inhibition of ALDH1A1. Importantly, ALDH1A1 inhibition also sensitized Cr(VI)-driven tumors to Gemcitabine chemotherapy and extended overall survival in mice. This study not only offers novel insight into the mechanisms through which Cr(VI) exposure initiates lung tumorigenesis, but identifies a potential therapeutic target for patients with lung cancer secondary to Cr(VI) exposure. Additionally, this study underscores the importance of limiting exposure to Cr(VI) in the workplace and finding safer alternatives for use in the manufacturing industry.

3.
Cancer Res ; 80(19): 4224-4232, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32747363

RESUMO

Progression on therapy in non-small cell lung carcinoma (NSCLC) is often evaluated radiographically, however, image-based evaluation of said therapies may not distinguish disease progression due to intrinsic tumor drug resistance or inefficient tumor penetration of the drugs. Here we report that the inhibition of mutated EGFR promotes the secretion of a potent vasoconstrictor, endothelin-1 (EDN1), which continues to increase as the cells become resistant with a mesenchymal phenotype. As EDN1 and its receptor (EDNR) is linked to cancer progression, EDNR-antagonists have been evaluated in several clinical trials with disappointing results. These trials were based on a hypothesis that the EDN1-EDNR axis activates the MAPK-ERK signaling pathway that is vital to the cancer cell survival; the trials were not designed to evaluate the impact of tumor-derived EDN1 in modifying tumor microenvironment or contributing to drug resistance. Ectopic overexpression of EDN1 in cells with mutated EGFR resulted in poor drug delivery and retarded growth in vivo but not in vitro. Intratumoral injection of recombinant EDN significantly reduced blood flow and subsequent gefitinib accumulation in xenografted EGFR-mutant tumors. Furthermore, depletion of EDN1 or the use of endothelin receptor inhibitors bosentan and ambrisentan improved drug penetration into tumors and restored blood flow in tumor-associated vasculature. Correlatively, these results describe a simplistic endogenous yet previously unrealized resistance mechanism inherent to a subset of EGFR-mutant NSCLC to attenuate tyrosine kinase inhibitor delivery to the tumors by limiting drug-carrying blood flow and the drug concentration in tumors. SIGNIFICANCE: EDNR antagonists can be repurposed to improve drug delivery in VEGFA-secreting tumors, which normally respond to TKI treatment by secreting EDN1, promoting vasoconstriction, and limiting blood and drug delivery.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Endotelina-1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Disponibilidade Biológica , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Endotelina-1/genética , Receptores ErbB/genética , Cloridrato de Erlotinib/farmacologia , Gefitinibe/farmacocinética , Humanos , Neoplasias Pulmonares/genética , Camundongos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Res ; 79(17): 4439-4452, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31273063

RESUMO

Although EGFR mutant-selective tyrosine kinase inhibitors (TKI) are clinically effective, acquired resistance can occur by reactivating ERK. We show using in vitro models of acquired EGFR TKI resistance with a mesenchymal phenotype that CXCR7, an atypical G protein-coupled receptor, activates the MAPK-ERK pathway via ß-arrestin. Depletion of CXCR7 inhibited the MAPK pathway, significantly attenuated EGFR TKI resistance, and resulted in mesenchymal-to-epithelial transition. CXCR7 overexpression was essential in reactivation of ERK1/2 for the generation of EGFR TKI-resistant persister cells. Many patients with non-small cell lung cancer (NSCLC) harboring an EGFR kinase domain mutation, who progressed on EGFR inhibitors, demonstrated increased CXCR7 expression. These data suggest that CXCR7 inhibition could considerably delay and prevent the emergence of acquired EGFR TKI resistance in EGFR-mutant NSCLC. SIGNIFICANCE: Increased expression of the chemokine receptor CXCR7 constitutes a mechanism of resistance to EGFR TKI in patients with non-small cell lung cancer through reactivation of ERK signaling.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptores CXCR/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos Transgênicos , Mutação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Receptores CXCR/genética , beta-Arrestinas/metabolismo
5.
Cancer Res ; 75(20): 4372-83, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282169

RESUMO

Non-small cell lung cancers (NSCLC) that have developed resistance to EGF receptor (EGFR) tyrosine kinase inhibitor (TKI), including gefitinib and erlotinib, are clinically linked to an epithelial-to-mesenchymal transition (EMT) phenotype. Here, we examined whether modulating EMT maintains the responsiveness of EGFR-mutated NSCLCs to EGFR TKI therapy. Using human NSCLC cell lines harboring mutated EGFR and a transgenic mouse model of lung cancer driven by mutant EGFR (EGFR-Del19-T790M), we demonstrate that EGFR inhibition induces TGFß secretion followed by SMAD pathway activation, an event that promotes EMT. Chronic exposure of EGFR-mutated NSCLC cells to TGFß was sufficient to induce EMT and resistance to EGFR TKI treatment. Furthermore, NSCLC HCC4006 cells with acquired resistance to gefitinib were characterized by a mesenchymal phenotype and displayed a higher prevalence of the EGFR T790M mutated allele. Notably, combined inhibition of EGFR and the TGFß receptor in HCC4006 cells prevented EMT but was not sufficient to prevent acquired gefitinib resistance because of an increased emergence of the EGFR T790M allele compared with cells treated with gefitinib alone. Conversely, another independent NSCLC cell line, PC9, reproducibly developed EGFR T790M mutations as the primary mechanism underlying EGFR TKI resistance, even though the prevalence of the mutant allele was lower than that in HCC4006 cells. Thus, our findings underscore heterogeneity within NSCLC cells lines harboring EGFR kinase domain mutations that give rise to divergent resistance mechanisms in response to treatment and anticipate the complexity of EMT suppression as a therapeutic strategy.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Análise por Conglomerados , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Gefitinibe , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Fenótipo , Quinazolinas/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA